[image: image1.png]

Stellingwerf Consulting

Complex Systems Analysis
Huntsville, AL

The
S_tran
Programming Language

Version 1.82 – 12/12/2011 – Revised 5/10/2021
R. Stellingwerf

[image: image7.wmf]

[image: image4.wmf]

[image: image5.wmf]

STELLINGWERF CONSULTING

11033 Mathis Mountain Rd SE, Huntsville, AL 35803

[image: image6.png]

 256-880-9789

rfs@stellingwerf.com

Table of Contents

41
S_tran Computations and Programming

41.1
Overview

51.2
A Brief Tutorial

71.3
Expressions and User Variables

71.3.1
Unary Operators

71.3.2
Binary Operations

71.3.3
Constants

81.3.4
Functions

91.3.5
List Functions

91.3.6
User Variables and String Variables

121.3.7
Expression Examples

121.3.8
User Defined Functions

131.3.9
Arrays

141.3.10
Multiple Commands on a Line

141.3.11
Multiple Lines per Command

141.3.12
Expression Debugging

151.4
Display Commands

161.5
Input Commands

171.6
Programming

171.6.1
Loops

181.6.2
If Tests

201.6.3
Goto

211.6.4
End/Exit Statements

211.6.5
Subroutines: Call / Return

221.6.6
Read_file

221.6.7
Debugging

221.6.8
Error Handling

231.6.9
Custom Commands: “exec”, “system” (generate a data plot)

231.7
File Input / Output

241.8
Data Processing

262
Programming Examples

262.1
Fibonacci

272.2
Cubic Equation Solver:

292.3
Computations and Data Files

302.4
Data Entry

312.5
Interactive Programming

333
System Generated Variable Names

344
S_tran Language Summary 2.00 © Stellingwerf Consulting - 2021

1
S_tran Computations and Programming

1.1 Overview

S_tran is a command interpreter that is designed to perform numerical computations. Its philosophy is to permit a general computation with a minimum of effort. It can be viewed as a simplified form of C, without the complications that make a C program difficult to get up and running.

S_tran is an interpreted language. This means that code is quickly written and debugging is easily done with the supplied “debug” and “step” commands plus a detailed expression debugger. It also means that an S program is not intended for large “number-crunching” applications, although modern processors can perform quite large computations in this type of environment.

There are no headers, data declarations, or data types. There are no end line semicolons or curly brackets. All code lines follow exactly the same format. This makes an S program very simple and readable, and allows quick computations with no programming overhead or fuss.

Installation Notes:
1. Download s_tran.exe and put it in a fixed location on your main disk. I use \home\sdat for my default location. The actual file name is not important, but this is the time to fix any changes that the web site may have made to the name, or to distinguish different versions of s_tran.

2. Now, your pdm2 run will be done with a file that ends in ".s". See the PDM_manual or the S_tran Applicaltions Guide for examples. This file will have to load the pdm data arrays ("read_pdm_data" command has been added recently to make this easier, see the Application Guide, PDM chapter), set the pdm parameters and call pdm2.

3. The actual running of the .s script is done by double clicking on the .s file. The first time (here is the trick!) the system will complain about an unknown file type, and you have to "Browse" to pick the s_tran.exe program as the default application for .s files. If the .s extension has been accidentally assigned to another program (like Notepad), things get a little tricky to fix. On XP it is possible to reassign the .s files using the Folder Properties tool. On Windows 7 this doesn't work, and the correction has to be made using regedit. If you are not familiar with regedit, find someone who is, because it has to be done very carefully to avoid messing up your system.
4. Double click on the “.s” file icon to run. Drag the “.s” file icon to a Wordpad shortcut to edit the scripts, or use “Opern With..” and select Wordpad.

Program Style: Each line in an S_tran program consists of a “command” plus zero or more “arguments”. Each field is normally separated by spaces, but an “=” or a “+” sign may be inserted (flanked by spaces) between the command and the arguments, or between arguments, for clarity. Arguments containing spaces or backslashes must be enclosed by “quotes”. The expression “A=3” (no spaces) is a logical test and evaluates to either 0 or 1. The expressions “A =3” or “A= 3” (one space) are illegal.
Comments: Any occurrence of the symbols # or // makes the rest of the line a comment field. The pattern /* makes all subsequent input a comment until the pattern */ is encountered (as in C). Use # for normal comments, // for temporary comments, and /*…*/ for comment blocks.

Escapes: The C-style escape sequences \n, \t, \\, \’, \”, \0 for newline, tab, backslash, single, double quotes, and null are supported in all unquoted arguments. In quoted strings \ can be used as an ordinary character (e.g. in file names).

Computations are carried out in algebraic “expressions”, such as 2+2, and stored in “user variables”, such as X. The first use of a user variable must be of the form X = expr, which causes the value of the expression to be associated with the variable name X. X can then be used in other expressions.

1.2 A Brief Tutorial

A short S program:
 show_line “Hello, World!”

Screen output:

Hello, World!
S commands consist of three main types: 1) assignments, 2) display commands, and 3) program control commands. Some examples are given here. See below for full details.

Assignments

These commands assign a value to a variable. User variable names always start with an upper case letter, and are defined when first assigned a value. Hence:

X1 = 45

Y_value = 67.

The value on the right can be a mathematical or logical “expression”. Expressions generally follow accepted algebraic syntax, but must not contain blanks, unless enclosed in double quotes. So...

UpperValue = 45-cos(60./7.)

LowerValue = max(UpperValue,43-Othervalue,0)

LogicalTest = “UpperValue > 45” // =1 if true, =0 if false

User variable names can be in the form of an array, such as X[1], Y[2][X1], etc. In S each array element is defined in its first assignment, as is any other variable, so array declarations are not needed, and only the defined elements are stored.

Display Commands

These allow output of values and strings to the screen. The simplest is “show” followed by a list of variable names or expressions:

show UpperValue LowerValue OtherValue

The screen output is simple and informative:

UpperValue = 0 LowerValue = -1 OtherValue = 45
Program Control Commands
The control command set is simple, but complete. It consists of loop, if, and (rarely used) goto statements. In addition a call / return statement pair allows the use of subroutines. Program statements can be nested in the usual way:

if LoopNeeded

 begin_loop_i = 1 10

 X[i] = i-4/(45-8)

 end_loop_i

end_if

Expressions and User Variables

 The expression syntax is generally the normal algebraic form. Details follow:

1.2.1 Unary Operators

–
numerical negation - negative of a number (e.g. –5)

~
logical negation – evaluates to 0 if non-zero, 1 if zero (e.g. ~A) (“not A”)

1.2.2 Binary Operations

+
addition = x + y

–
subtraction = x - y

*
multiplication = x * y

/
division = x / y

^
exponentiation: x^y = xy
%
modulus = ((x/y) – floor(x/y))*y = remainder after divide
=
evaluates to 1 (true) if both sides are equal, 0 (false) otherwise

>
evaluates to 1 (true) if left expression is greater, else 0

<
evaluates to 1 (true) if left expression is smaller, else 0

&
(and) - evaluates to 1 (true) if both sides are non-zero, else 0

|
(or) - evaluates to 1 (true) if either side is non-zero, else 0

~
(not) - (x ~ y) evaluates to (x & (~y)) (as in x-y = x+(-y))

All operations apply to real numbers and produce real number results. This includes “modulus”, which in C applies only to integers. e.g. 5.5%4 = 1.5.

Evaluation hierarchy (order of evaluation) is: – ~ (unary ops), then ^ % then * / then + - then = > < then & | ~ . Equal level operations are evaluated left to right. This usually produces the expected result, but parentheses can be used to clarify or override this order

Logical negation plus the last six operations can be used to construct Boolean expressions for use in true/false functions. Examples:

1) To construct “x not equal y”, write ~(x = y). The (C style) alternative (x ~ = y) is not a valid expression in this system.

2) To construct “x greater than or equal to y”, write ~(x<y)

3) To construct “xor” (true if either x or y is true, but not both), write (x|y)&(~(x&y)) or (x&~y)|(y&~x) or (x~y)|(y~x)

4) To construct “nor” (true if both x and y are false), write ~x~y , or ~(x|y)

5) To construct “nand” (true if either x or y is false), write ~x|~y , or ~(x&y)

6) To construct “x implies y” (false if x is true and y false), write ~(x~y) , or ~x|y

1.2.3 Constants

true / false
= 1 and 0, respectively
pi
= 3.14159.... = ratio of circumference to diameter of a circle

ee
= 2.71828... = base of natural logarithms

deg
= pi / 180... = radians / degree (e.g. sin(45*deg))

ran
= random number, 0->1, uniform distribution

ran2
= same as ran, but ranges -1 -> 1

rang
= random number, Gaussian distribution, mean 0, stdev. 0.5

ranw
= Weibull random deviate (see Weibull/Apps Manual)

i, j, k
= loop indices (see loops)

eof
= (t/f) end of file flag (see data processing)

err
= (t/f) data error, either i/o or compute

qq
= (t/f) result of a query or str_eq (see input commands, strings)

ver
= current version of S_tran (e.g. 1.32)

dec
= current setting of the “decimals” formatting parameter

wid
= current setting of the “field_width” formatting paramete
The random number sequences generated by ran, ran2, rang and ranw can be controlled with the following command:

seed #|ran
 reset the seed for all random number sequences. Only the integer part of # is used. The argument “ran” uses a variable seed from the system clock.

1.2.4 Functions

abs(x)
= absolute value = |x|

sign(x) = -1, +1, depending on the sign of x, returns 0 if x=0

int(x)
= round to nearest integer

floor(x) = round to next lowest integer

ceil(x)
= round to next highest integer

ip(x)
= integer part of x (truncate)

fp(x)
= fractional part of x (will be <0 if x<0)

sq(x)
= square = x^2

sqrt(x)
= square root of x = x^(1/2)

cub(x)
= cube of x = x^3

cbrt(x)
= cube root of x = x^(1/3)

sin(x)
= sin(x), x is in radians, sin(y*deg) if y is in degrees

asin(x)
= arcsin(x), result in radians, asin()/deg is in degrees

cos(x), acos(x), tan(x), atan(x) = other trig fns

atan2(x,y)

log(x)
= log to base 10

ln(x)
= log to base e

exp(x)
= e^x

exp10(x) = 10^x

fact(x)
= int(x)! – factorial of the nearest integer to x

spl(x) = cubic b-spline, total width +/- 2 (unit smoothing length) , peak = 2/3, value at +/- 1 = 1/6, integral = 1, center at 0.
For all cases, “x” can be any valid expression. This includes numbers, constants, variables, functions, or any combination of these. A valid expression must evaluate to a number.

1.2.5 List Functions

Max and Min (note use of commas):

min(exp1,exp2,exp3, ...) = minimum of the list of expressions

max(exp1,exp2,exp3, ...) = maximum of the list of expressions

“IF” function (note use of commas):
if(exp0,exp1,exp2,exp3)
where expn = valid expressions

If exp0 < 0, then the result is exp1

If exp0 = 0, then the result is exp2

If exp0 > 0, then the result is exp3

To avoid duplicating expressions, the following forms are allowed:

if(exp0,exp1,*,exp3) = if(exp0,exp1,exp1,exp3) i.e. this does <=

if(exp0,exp1,exp2,*) = if(exp0,exp1,exp2,exp2) i.e. this does >=

This function is included for portability from similar expression in other languages (“computed if”). In practice, the following form is clearer and is exactly equivalent (remember that the tests evaluate to either 0 or 1 when used in ordinary mathematical expressions):

exp1*(exp0<0)+exp2*(exp0=0)+exp3*(exp0>0)

This alternate approach is also clearly more general. To construct an expression that evaluates to exp1 if J=1, exp2 if J=2, etc., write

Var = exp1*(J=1)+exp2*(J=2)+exp3*(J=3)+…..,

where the exps are any valid expressions.

1.2.6 User Variables and String Variables

Any variable name that begins with an upper case letter or $ is treated as a user defined variable. User variable names may contain upper case letters, lower case letters, numbers, underscores, and the character ‘$’. Numeric variables are double precision real numbers.

User variables must be defined by equating to a valid expression (e.g. A = 3). They can be defined in terms of other user variables, and their values can be changed later in the input stream (except for constants, see below). X = X+3 is allowed if X has been defined.

The command

init_var Var_name = #

checks to see if the user variable “Var_name” exists, if not, it creates it and initializes it to “#” (or 0 if only one argument is present). If the variable exists, no action is taken. “init_var” is useful in subroutines where a parameter may or may not have been initialized before the call. If not, default values (#s) are assigned. It can also be used to keep track of how many times a section of code has been executed:

init_var Count = 0 // Count is set to zero first time through

Count = Count+1 // Count = # times through this code

Local Variables:

Variable names that end in $ are local to the routine in which they are defined, and cannot be accessed from another routine or file. Values persist over multiple similar calls (same recursion level) to the same function. Changing “Count” to “Count$” in the previous example will work. Other variables named “Count$” in other routines will be treated as different variables with differing values. Also, if the function calls itself, or is called via a different number of other routine calls, the local variables will be treated as distinct. This allows functions that are called many times to keep track of their data without fear of another function with the same variable names changing the values.

String Variables:

Variable names beginning with a $ are used to store strings. String variables must be initialized with strings or other string variables. All commands with string arguments will accept string variables. Strings assignments can have multiple fields to build the desired string:
$Str1 = “Start “; $Str2 = End;
// inits

$Str = $Str1 + Middle + “ “ + $Str2
// the pluses are optional

show $Str

$Str = Start Middle End

String functions:

str_len string

(length = # of characters, is stored in S_len).

str_char string #
($S_char will contain the #th character of “string”. End of string = “”)

str_sub string substr
(searches for the first occurrence of the substring “substr” in “string”, sets S_found = true if found, $S_head = portion of “string” preceding “substr”, $S_tail = portion after)

str_tofloat Var string
(convert the contents of the “string” to a float, store in variable “Var”. e.g. $Str = “3.14”; str_tofloat Var = $Str)

str_cap $Str
capitalize the string $Str, if possible, (first character) perhaps for use as a variable name

str_upper $Str
convert all alphabetic characters in $Str to upper case

str_lower $Str
convert all alphabetic characters in $Str to lower case

Strings can be compared with

str_eq string1 string2
 [window]
(sets qq=1 if strings are equal, qq=0

otherwise. Also, S_eq = the number of matching characters, S_off = the number

of diagonal matches, (correct char, but wrong position within “window” chars), S_comp = <0, 0, >0 if first string is less, equal, greater than second).

It is also possible to compare strings directly, as in

if $Str1=$Str2 or if $Str=”nogo”
or
if $Str1=$Str2&$Str=”nogo”

The left-hand part of a string comparison must be a string variable name. Each comparison is a logical expression and produces a result of 0 or 1. See below for details.

For complex string manipulations, it is sometimes convenient to store the string in an array. The following code fragment converts the string $string to the array $str[].

 str_len $string

 for_i = 1 S_len

 str_char $string i

 $str[i] = $S_char

 end_i

or,

 for_i = 1 100

 str_char $string i

 break_if $S_char=""

 $str[i] = $S_char

 end_i

To insert the value of an expression in a string field, precede the expression with an “@”, as in @Var or @(5*3+5). The expression will be evaluated by the parser if not in a quoted field, and the value will replace the expression in the string. Hence:

X = 3

$Xlabel = “X = “ + @X
 // $Xlabel contains “X = 3”

Commands will automatically evaluate string variables where appropriate. Finally, a random string is sometimes needed. This does it:

str_ran $Str len low_char high_char or

str_ran $Str len pswd

($Str returns a random string)

where len = length of the random string, low_char = first char to be used, high_char = last char (0 9 = numbers, A Z = alphabet, a z = lower case, A z = both plus [\]^_’, etc). If the “pswd” form is used, lower case, upper case and 0-9 are used.

Constants:

Any user variable can be designated a “constant” whose value is fixed and cannot be changed by any routine. To do this, the flag “constant” is set via the command:

constant [true]

sets the “constant” flag

All variables that are defined with this flag set are designated as “constants”. It is an error to attempt to change their values. To clear the flag, enter the command:

constant false

clears the “constant” flag

Constants are normally declared in blocks at the start of a program or routine. An existing variable can be declared “constant” during execution of a program. From this point on, its value cannot be changed. The “constant” state is always irrevocable.

1.2.7 Expression Examples

Here are some examples of user variables and expressions:

Np = 300/4 // = 75

Np = “300 / 4” // = 75, not a string

Dim$ = 4-2 // = 2, local variable

Dim$ = “4 – 2” // = 2, not a string

$Dim = 4-2 // = “4-2”, is a string

Dim = 4 - 2 // = “4-2”, local string variable

Dim = “4 – 2” // = “4 – 2”, local string variable
Usec = 1.e-6

Max_time = 10*Usec // time in micro-seconds

More examples:

Np = if(Dim-2,500,5000,50000)
 // Np for Dim = 1, 2, 3

Rd = sqrt(Np)-20

 // function of Np

Ds = 180*deg

 // pi radians

One thing to keep in mind is that a blank space is usually considered a separator of arguments in the command line, so when using strings and algebraic formulae, either do not use any blanks, or enclose the entire expression for each argument in quotes. The exception is a string variable assignment. Since string assignment arguments are combined, any blanks, “+”s or “=”s will be dropped if unquoted.

1.2.8 User Defined Functions

Functions can be defined using a “function” command of the form:

function Fn_name(Arg1$,Arg2$,...) = expression

where “Fn_name” (the function name) is a valid user variable name, Argi$ (0-10 arguments) are local variable names, and “expression” is any valid expression involving Argi$, or a string variable containing such an expression. There must not be any blanks before the closed parenthesis. Once so defined the function can be used in any expression such as:

X = sqrt(Fn_name(expr)/4+3)

In this case the expr can be any valid expression, which will be evaluated and its value will replace Arg$ in the function definition. The value of the function expression will then replace the Fn_name() reference in the assignment for X. For example:

function Sec(X$) = 1/cos(X$*deg) // X$ is in degrees

...

Y = Sec(45)-Sec(30)

show Y

run...

Y = 0.259513

The local argument variables are assigned values when the function is evaluated, and are not accessible outside of the function itself. A zero argument function can be used as an abbreviation for a complex expression. It is equivalent to assigning the expression to a variable, then immediately using the variable in another expression.

A function definition must precede its use, but once defined it can be accessed from any routine, subroutine, or external file.

Functions can be defined in terms of other (previously defined) functions, and functions of functions are handled correctly.

function F0() = 42

U = F0()

show U

function FF(X$) = X$/2+F0()

show FF(10) FF(FF(10))

run...

U = 42

FF(10) = 47 FF(FF(10)) = 65.5

If a function is defined in a loop, any occurrences of “i”, “j”, or “k” will be evaluated in the defining loop. A function definition not in a loop can have these indices in the function expression, and in this case they will be evaluated in the evaluation loop.

String functions are not implemented at this time.

1.2.9 Arrays

Indexed names can be generated using a string and an expression value. The syntax is: string[exp] where “string” is any string of characters, and “exp” is a valid expression.. The result is the string with the integer value of the expression inserted. For example, the expression

Item[Var]

would evaluate to “Item[1]”, “Item[2]”, , etc., if the values for “Var” are 1, 2, Indexed variable names act the same as array elements in other languages. Note that multiple subscripts also work with the format Var[i][j], but nested brackets are not allowed. Labels can also be indexed in the same way (see “goto” and “Subroutines”, below).

Special cases: 1) multi-dimensional array; Mat[i][j][k], 2) an array of strings: $Str[i] 3) a local array: Vect[i]$ 4) a local array of stings: $Str[i]$ 5) indexed labels: label[i]: (could be used to construct a “case” structure or an array of subroutines), 6) an array of functions: Func[i](X$,Y$) - the function can make use of the loop indices and can be defined, as well as used, in a loop. Use “init_var” to create new array elements as needed.

1.2.10 Multiple Commands on a Line

Several commands can be on the same line if separated by semi-colons. No semi-colon is required at the end of a line, but is not an error.

Examples:

P_rad = 0.4765 ; P_vel = 6.75e5; P_angle = 60

T_rad = 0.8; T_thick = 0.030226;

If i=2; A = 3; end_if

Warning: do not use semi-colons on any lines containing a “jump” process, such as beginning and ending lines of a loop, subroutine calls, etc. These conditions are not detected by the interpreter, and could cause unpredictable results.

1.2.11 Multiple Lines per Command

Long commands can be split over several lines. Insert a \ at the end of each split line. Spaces after the \ will be dropped, and all leading spaces in the next line will be dropped. Example:

if Variable1&Variable2&\

 Variable3|Variable4|\

 Variable5&Variable6

 do_something

end_if

or,

if Variable1&Variable2&\

 Variable3|Variable4|\

 Variable5&Variable6 \

 do_something

The space before the final “\” is mandatory in this construction of a single line “if” statement.
1.2.12 Expression Debugging

By adding an exclamation point to the end of any expression, a detailed structured trace of the evaluation procedure is produced.

The order of evaluation is imposed by a pre-process pass that inserts extra parentheses when needed. This could be the source of unexpected results. The debug output will show these parentheses and allow verification that the evaluation was done correctly. For example,

A = 1; B = 2; C = 3

D = A+B^4/sqrt(C)!

// note debug flag on expression

show_nl; show D

// see next section

produces:

pf: A+B^4/sqrt(C)

 pe: A+((B^4)/sqrt(C)) plev=0, lev=1

 uvar: 1

 pe: (B^4)/sqrt(C)) plev=1, lev=2

 pe: B^4)/sqrt(C)) plev=2, lev=3

 uvar: 2

 op: 2 ^ 4 = 16

 <--pe: plev=1 lev=2

 pfun: sqrt(C))

 pe: C)) plev=2, lev=3

 uvar: 3

 <--pe: plev=1 lev=2

 fn: 1.73205

 op: 16 / 1.73205 = 9.2376

 <--pe: plev=0 lev=1

 op: 1 + 9.2376 = 10.2376

<--pe: plev=0 lev=0

D = 10.2376

Here the first line shows the expression as written, the second line shows the expression with extra parentheses inserted to set the precedence of the operations. In this case two extra sets of parentheses are needed to ensure that the exponentiation is done first, and the divide second. The following lines trace the evaluation procedure. “pf” means “parse function”, “pe” means “parse expression”, “plev” is the level of parentheses being processed, while “lev” shows the level of recursion being used in the evaluation. As the expression is dissected, eventually lines labeled “fn:” (function), “uvar” (user variable), or “op:” (operation) indicate the actual values of the terms being evaluated. This debug output shows all of the details of the algebraic evaluation process and should enable the detection of any problems.

It is advisable to insert a “step” just before, or an “end” just after the dissected line to force a pause in the display scrolling after the diagnosis.

1.3 Display Commands

These are commands that can be used to display results:

show exp1 exp2
(args are a list of expressions, usually user variables)

Displays the value of the variables in the format exp1 = val1, exp2 = val2...

show_line field1 field2 + @exp ...
(args are printed on the line as strings, no spaces between arguments. Use quoted fields for formatting, + is optional.. String variable names and @Vars are replaced by values.)

show_field field1 field2 @exp ...
(same as above, except that no newline is appended at the end)

show_nl
(print a newline character)

decimals # [width]
(sets the number of decimal places to display, float format. Default is a general format that works in most cases. Set # = -1 to restore the default. If # < -1, then exponential format is used, with abs(#) decimals. “width” sets the width of the field, if present.

decimals 2 6 is equivalent to the C format %6.2f

decimals –2 6 is equivalent to the C format %6.2e

decimals –1 6 is equivalent to the C format %6g.)

Table commands (see section 2.1 for an example):

show_lab lab1 lab2
(show_lab0 – same but no newline)

Displays a list of labels (any strings) in column format

show_tab exp1 exp2
(args are a list of expressions) (show_tab0 – same but no newline) Displays the values of the expressions in column format.

set_tab #

(# = width of columns, default = 12)

Sets the column width for a tabular display.

Some examples:

A message: show_line “Hello World”

Hello World

A list of variables: show Var1 Var2 Var3

Var1 = 8 Var2 = 13 Var3 = 13

An example of a formatted line – a quadratic equation:

B = -6; C = 11; D = -6

show_line "Quadratic: " @B " X^2 +” @C " X +" @D

show_nl

results in the output:

Quadratic: -6 X^2 + 11 X + -6

A better format for quadratics is shown in the “if” test section, below.

1.4 Input Commands

Variables can be initialized from the screen prompt using the command:

input Var1 Var2 Var3 ...

An example:

input A B C D

show_nl; show A B C D

Displays (with the values typed in):

 A =? 1.1234

(Type/Enter)

 B =? 2*sqrt(10)
(Type/Enter)

 A = 1.1234 B = 6.32456

The responses can be any valid expression, including functions of the variable being input.. Follow each response by a carriage return (Enter). If the variables have been defined, their current values are shown in parentheses. In this case, a simple <Enter> with no other input will retain the current value. The variables will be initialized if not already defined. The entries “done” or “end” or “eof” will return an end-of-file condition (eof = true), which can be tested (see “Data Processing”). To suppress the variable name prompt, use input0 Var1 Var2....

The Boolean counterpart to “input” is the following:

query “question string” [y/n/Var]
(second arg is optional, used for default)

The question string should be a yes/no question, the response is either “y” or “n”. The result is stored in the system constant “qq”, either 1 (true) for “y”, or 0 (false) for “n”.

Example: query “Do Another Case?”; break_if ~qq . If the second argument is a logical variable, its value is used for the default, and its final value = qq.

Query can also be used to simply insert a pause in the program: query “<cr> to continue”.

1.5 Programming

Just a few commands are needed to completely control the flow of a computation.

1.5.1 Loops

Occasionally a large number of repetitions are required perform a computation, and some sort of iterative construct is needed. This is provided in the form of three “loop” commands. The commands are:

begin_loop_i
begin end [increment(1)]

args refer to index i

 (commands that use the index i)

 begin_loop_j
begin end [increment(1)]

args refer to index j

 (commands that use the indices i, j)

begin_loop_k
begin end [increment(1)]
args refer to index k

 (commands that use the indcies i, j, k)

end_loop_k

 end_loop_j
end_loop_i

The third argument (increment) is optional, and is set to 1 if not present. The three indices i, j, k can be used, but cannot be changed or redefined. The indices are real numbers, so the “begin”, “end”, and “increment” values can be non-integers, and can be negative. The arguments can also be valid algebraic expressions. The end condition is tested at loop creation as well as after each application of the increment, so it is possible for a loop to iterate zero times, in which case the interior commands are skipped.

If the i/j/k notation is inconvenient, simply equate a user variable to the loop index as the first command in the loop. This allows a more descriptive index name, and avoids problems if additional loop levels are added at a later time.

Early termination of a loop on a test is done with:

continue

skip to end of loop

continue_if test

same, if “test is true”

break

skip to end of loop and exit

break_if test

same, if “test is true”
These commands are ignored if not in an active loop, and always apply to the innermost loop. The alternate forms if test break and if test continue also work.
The three different loop structures are provided to allow nesting (e.g. for x, y, z constructions). The nesting must be in i-j-k order. In nested loops, the inner loops may use any of the currently defined indices, even in the arguments (variation limits of inner indices can thus depend on the values of the outer indices). If more than three levels of loops are required, this can be done by using subroutines or external data files (see “Subroutines”, and “External Data Files”, below).

A loop command is the only way to repeat execution of blocks of commands in this system. See the “Examples” section for practical applications.

A sample loop structure:

begin_loop_i = 1 20

 begin_loop_j = 1 35

 A[i][j] = 4*i–log(j)

 break_if A[i][j]>42

 end_loop_j

end_loop_i
For quick work, the following abbreviations are defined: for_i = do_i = begin_loop_i, end_i = end_loop_i, for_j = do_j = begin_loop_j, end_j = end_loop_j, for_k = do_k = begin_loop_k, end_k = end_loop_k.

1.5.2 If Tests

Simple “if” statements can be used when only a single command follows the test clause. Type the test and the command on the same line:

if test command [args …]

This form does not require an “end_if” statement. It can be used to make any command appear or disappear. Use responsibly.

More general “if” structures are constructed as usual as follows.

if test

test clause must be present, test = 0, false, else true

[commands to do if “test” is true]

else_if test2

optional, note underscore
[commands to do if “test2” is true]

else_if test3

optional

[...etc....any number of else_if clauses are allowed]

else

else is also optional, but good practice

[commands to do if all tests are false]

end_if

ends the if command block

The possible forms are thus:

if test
 [commands to do if “test” is true];\

end_if

or..

if test

 [commands to do if “test” is true]

else
 [commands to do if “test” is false]
end_if
or...

if test
 [commands to do if “test” is true]
else_if test2
 [commands to do if “test2” is true]
else
 [commands to do if all tests are false]
end_if
etc.

Note that this “if” syntax is subtly different than “C”, which lacks an else_if statement.

The “test” is an ordinary expression involving algebraic and Boolean operators. “If” clauses can be nested, and the “if” clauses can include loops, or can be in a loop. They cannot extend across begin_loop or end_loop statements, however.

Here is a test of the string conversion functions, using simple and ordinary if statements.

/* string conversion tests */

Case = 1

input Case

$A = zzzABcd

if Case=1 str_cap $A

if Case=2 str_upper $A

if Case=3 str_lower $A

if Case=4

 str_lower $A

 str_cap $A

end_if

show $A

end

This produces (1) ZzzABcd, (2) ZZZABCD, (3) zzzabcd, (4) Zzzabcd, (else) zzzABcd.

Returning to the quadratic equation, use some tests to clean up the display:

B = -6; C = 11; D = -6

show_nl; show_field "==> Quadratic: "

if B=1; show_field "x^2"

else_if B=-1; show_field “-x^2"

else_if B; show_field @B " x^2"

end_if

if C=1; show_field " + x"

else_if C=-1; show_field " - x"

else_if C>0; show_field " + " @C " x"

else_if C; show_field " - " @-C " x"

end_if

if D>0; show_field " + " @D

else_if D; show_field " - " @-D

end_if

show_nl; show_nl

resulting in the cleaner output:

==> Quadratic: -6 x^2 + 11 x - 6

Note that the “=” associated with the “if” statements are Boolean tests, while the “=” associated with the B, C and D definitions are flanked by spaces, and are treated as white space.

“If” structures have no labels, so extreme care should be taken to assure that the if...else...end_if patterns are all aligned, do not extend across loop boundaries, etc. If not properly aligned, an error condition will be generated, but tracking the problem may be difficult.

1.5.3 Goto

Although not ever strictly needed, a “goto” command can occasionally be used to avoid a cumbersome cascade of tests, breaks or “if” clauses. To prevent “spaghetti code” this implementation will only jump forward in the file. The syntax is:

goto label:

or
goto command

........

[code block]

.......
label:

command

The result will be an unconditional jump to the next line with the string “label:” or “command” in the command field. This can be an actual command in the file (such as end_loop_j), or a descriptive label that does not correspond to any actual command. To distinguish a label from a command, follow the label by a colon (i.e. “label:”), as in C. Jumping to a command causes that command to be the next one executed. Hence, a “goto” to an “end_loop_i” statement is equivalent to a “continue” command.

Usually, a “goto” command will appear in an “if” clause:

if test_on_something

goto somewhere:

end_if

................ // code block

somewhere:

Great care should be used in the application of “goto” commands. For example, it is legal to use a “goto” to jump out of an “if” clause or a loop, but it is illegal to jump into an “if“ construction or a loop. Common sense should be used. The processor will catch most errors of this sort.

1.5.4 End/Exit Statements

The end of the program can be specified by the simple command “end”. This is usually used to separate the main program from subroutine definitions. It causes exactly the same condition as an “End-of-File” normally does.

The command

exit [string]

“string” is an optional argument

causes a termination of the program. If an argument is present, it is displayed as a string before exiting. Error messages may be built using strings, string variables, “@” expressions, as in string variable definitions.
1.5.5 Subroutines: Call / Return

A subroutine is called with the following command:

call label: [file_name]

(file_name is optional)

where the file name is needed if the subroutine is in an external file in the local folder or directory. The subroutine is usually in the same file as the main code. In this case end the main code section with an end command. In either case the subroutine generally ends with a return command, and may contain other return commands for early exits.

The “call” command transfers control to the “label:” statement. “label:” can be any appropriate descriptive string. The first “return” encountered returns control to the statement following the call command. Subroutines have access to all user-defined variables, but have their own unique loop indices. Thus a subroutine call increases the effective depth of the loops by three additional indices.

Subroutine calls can be in loop, and subroutines can call other subroutines. If loop indices from a calling routine are needed in a subroutine, define a user variable in the loop as equal to the value of the loop index, as in begin_loop_i = 1,10; I = i; call compute: .

Any user variable ending with a “$” is a local variable, and will be available within the subroutine only. Thus “Var” is global, but “Var$” is local. Subroutines in external files can also call subroutines. In this case, if the file_name is missing, the second routine is assumed to be in the same (external) file as the first.

1.5.6 Read_file

External command files can also be “read” by the command

read_file file_name

The file is processed in the usual fashion, with the values of the user variables available, but with unique loop indices, and variables ending in “$”, as in subroutines. External files are useful to “package” a preset process or set of data initializations. The end of file acts as a return command. The file is assumed to be in the same folder as the S file being run.

A convenient way to “package” a subroutine or set of subroutines is to place them in an external file and precede the subroutines with a test, driver, or interface program that calls the routines. The command “read_file” then accesses the routines via the interface program. See “regress.s” as an example (in the math package). In this case the interface provides an interactive setup option. If setup is not desired, the regress subroutine can be called directly.

If the file is not found, or another error occurs, the parameter “err” is set to true.

1.5.7 Debugging

The command “debug” generates processing information for each command. The command “step” will in addition cause a pause after each command (type Enter to continue). Insert in code near a suspected bug. For example:

if i=5 step

// turn step debug on

if i=10 step = false
// turn step debug off
Either “step” or “step = true” will turn on the condition. “step = false turns it off.

There are also the following specialized debug commands, usually used only during system testing: debug_inp (details of command parsing), debug_if (details of if tests), and debug_loop (details of the loop commands).

1.5.8 Error Handling

If an error is detected, the default action is to pause and then exit. For some applications, it may be preferable to display an error message and continue. The command noexit sets this condition. It can be turned on an off with an optional (true/false) expression argument. If an error is detected with noexit = true, the parameter “err” is set to true, and the program continues. “err” is cleared when tested.

1.5.9 Custom Commands: “exec”, “system” (generate a data plot)

It is possible to load a command into a string variable, say “$Cmd” and then execute this command with the (meta) command:

exec $Cmd

Some commands have a variable number of arguments. “show_lab” and “show_tab” are examples. To build a table with a variable number of columns, build a string to load a command line of the form “show_lab lab1 lab2 lab3 ...” into a string variable. Then execute this command line using “exec”:

$str1 = show_lab // start label command

do_i = 1 M

 $str1 = $str1 + " " + var @i

end_i

exec $str1
 // print label line

A related command for executing system commands is:

system $Cmd

For example, if a data set has been written to \home\sdat\data.csv, and the Thor plot package is located at \home\sdat\thor.exe, and a Thor Workspace file to plot data.csv is located in \home\sdat\data.thor, then a plot of the data can automatically be produced via the following commands:

/* write data to data.csv file */

close_file data.csv

// needed

system "c:\home\sdat\thor c:\home\sdat\data.thor"

1.6 File Input / Output

These are general file i/o commands. To write to a file, use the command:

write_line file field1 field2 @exp ...
(same as show_line, except that the line is written to the specified file, no delimiters between fields)

If the file is not open for writing, it is opened, and subsequent writes are appended to the file. The arguments are combined as in the show_line command, and can be a series of strings, quoted strings, string variables, or expressions (use @ to evaluate). write_field... is the same, but without the newline. Use “decimals” to format. To read from a file, use:

read_line file Var1 Var2 ...
(read one line, assign values to the variable list, number of variables must match the number of fields on the line unless a single string variable appears, then it gets the whole line. Fields are assumed delimited by blanks unless the delimiter has been reset (see “set_delim”). The number of fields found is placed in the variable Nfields.)

read_list file
(this variation reads fields delimited by spaces and places the number of fields in Nfields, the text in $Field[i], i = 1, Nfields)

err

(set to true if too few fields (= Nfields) are found in the data line)

eof
(set to true if an end of file is encountered – file is closed)

close_file file_name

(close the file and flush the buffer)

Use read_list for files with many columns or fields, and/or very long line lengths. Lines longer than about 1000 characters will fail using read_line, but read_list will work.

After all the data is read or written, it is good practice to close the file. This is required if another application needs access to the data immediately, but in most cases this command is optional since all files are closed at the termination of the routine.

1.7 Data Processing

These are specialized commands to read and write data sets. Both reading and writing a file consists of a single “_lab” command to open the file, followed by multiple “_dat” commands to read or write the data line by line. The commands are:

write_lab file lab1 lab2 lab3 ...
(file will be opened and written to local directory. Labels are strings that will be written to the first line in the file. If lab1 = <append>, the data will be appended to an existing file.)

write_dat exp1 exp2 exp3 ...
(appends one record of data to file defined by a previous call to “write_lab”. Use “skip” to write an empty field.)

read_lab file [$lab1 $lab2...]
(file in local directory, is opened, labels are placed in $lab vars if present, else in $Labels[])

read_dat [Var1 Var2 Var3....]
(reads one record of data from the file designated in a previous call to read_lab and assigns the values to the variable names in the calling list. eof and err are set as in read_line, if no args, then put values in Vars[i])

set_delim comma|space|tab|slash
(assigns a delimiter for subsequent reading or writing data files. Default is “comma”)

These commands are designed to read and write “.csv” (comma separated variable) files. File names are set by write_lab and read_lab, and should end in .csv to be read by other applications. The number of fields found by read_lab and read_dat are placed in the variable Nfields. The “set_delim” command is provided to allow reading and writing of files with other formats for special applications, and specifies the delimiter used between the labels and between the data values. The delimiter is also placed in $Dlm. The file format consists of one line with a list of column labels, followed by any number of data lines, each containing the same number of entries as labels on the first line of the file. The data entries can be numeric or strings.

If a file is in .csv format, but has one or more title lines above the labels, these lines should be read with a read_line command before using read_lab. The file pointer will be advanced correctly.

For writing only, several data files can be opened simultaneously. Use a sequence of “write_lab” commands to open the files, and then write the data using a sequence of “write_dat” commands. The data will be written to each file in sequence. Be sure that the number of “dat” commands always agrees with number of the “lab” commands.

When an end-of-file is encountered, the system variable “eof” is set and the file is closed. This is the cleanest way to end a data input loop.

read_lab $file // this opens the data file, reads the first line

begin_loop_i = 1 Big

 read_dat U[i] V[i] W[i] // read the data
 break_if eof // file closes on eof, next read will fail

end_loop_i

N_entries = i-1 // allow for the extra eof line

An alternative read data file command is:

read_dat_2 file
(reads a standard .csv data file. Stores the number of columns in M, the number of rows in N, the labels in the string array $Labels[col], and the data values in the 2D data array X[row][col].)

This reads any data file with a single call. To set or reset the file-type extension of a file name in a string variable, use

set_file_type $file ext
(e.g. set_file_type $datfile csv – if $datfile contains data.txt, it is changed to data.csv)

Variable definitions, similar to Fortran Namelist output can be saved and read with the commands:

write_var file Var1 Var2 Var3 ...
(writes variable definitions to “file”, of the form “Var = value”, one per line)

read_var file Var1 Var2 ...
(reads and initializes variables, checks the names against those in the file)

If a series of variable definitions, such as those generated with write_var commands, are stored in a separate file, “read_file” can also be used to read and store the values.

2 Programming Examples

2.1 Fibonacci

This is a simple calculation with a tabular output. The “Ratio” approaches the Golden Mean.

/*----FIBONACCI---*/

show_line " ========Fibonacci========"

show_nl

Var1 = 1

Var2 = 1

show_lab Num Next Prev Ratio

show_lab "======" "======" "======" "========="

begin_loop_i = 1 10

 Var3 = Var1+Var2

 Var1 = Var2

 Var2 = Var3

 Ratio = Var1/Var3

 show_tab i Var3 Var1 Ratio

end_loop_i

show_lab "======" "======" "======" "========="

The result is:

 ========Fibonacci========

 Num Next Prev Ratio

 ====== ====== ====== =========

 1 2 1 0.5

 2 3 2 0.666667

 3 5 3 0.6

 4 8 5 0.625

 5 13 8 0.615385

 6 21 13 0.619048

 7 34 21 0.617647

 8 55 34 0.618182

 9 89 55 0.617978

 10 144 89 0.618056

 ====== ====== ====== =========

With a little added formatting, such as:

set_tab 6

show_lab0 Num Next Prev

set_tab 10

show_lab Ratio

set_tab 6

show_lab0 "======" "======" "======"

set_tab 10

show_lab "=========="

the display can be cleaned up to produce:

 Num Next Prev Ratio

============================

 1 2 1 0.5000

 2 3 2 0.6667

 3 5 3 0.6000

 4 8 5 0.6250

 5 13 8 0.6154

 6 21 13 0.6190

 7 34 21 0.6176

 8 55 34 0.6182

 9 89 55 0.6180

 10 144 89 0.6181

============================

2.2 Cubic Equation Solver:

This routine shows some of the display options and subroutine use, as well as the mathematical techniques of iteration and error checking. The special cases checker and the cubic display generator are set up as subroutines. The cubic solver algorithm is shown at the top in the comments. Just change the A, B, C, D and X1 definitions to init_var commands to run this as a subroutine.

#---cubic equation solver---

11/03 - rfs

find roots of a cubic equation

ax^3 + bx^2 + cx + d = 0

NR iteration to real root:

xnew = (2ax^3 + bx^2 - d) / (3ax^2 + 2bx + c)

if r1 is the real root, and q = (b/a + r1)

then the other two roots are given by:

r2,3 = -q/2 +/- sqrt((q/2)^2 - (q*r1 + c/a))

#----define the problem-----

//A = 1; B = -1; C = 1; D = -1

A = 1; B = 3; C = 3; D = 1

call show_cubic: // display routine

call check_special: // special cases routine

X1 = 1. // guess

#---find a good guess---

begin_loop_i = 1 5

 break_if 3*A*sq(X1)+2*B*X1+C

 X1 = X1+0.1

end_loop_i

#---iterate to first root---

begin_loop_i = 1 100

 Denom = 3*A*sq(X1)+2*B*X1+C

 break_if abs(Denom)<1.e-15

 X2 = (2*A*cub(X1)+B*sq(X1)-D)/Denom

 break_if ~(abs(X2)+abs(X1))

 Delta = abs((X2-X1))/(abs(X2)+abs(X1))

 X1 = X2

 break_if Delta<1.e-8

 if i=100

 show_lab "No convergence in iteration"; show_nl

 end_if

end_loop_i

show_line "Real Root... " @i " iterations"; show_nl

show X1; show_nl

#---compute other two roots---

Q = B/A+X1

Dis = sq(Q/2)-(Q*X1+C/A)

if Dis>0|Dis=0

 X2 = -Q/2-sqrt(Dis)

 X3 = -Q/2+sqrt(Dis)

 show X2; show_nl; show X3

else

 Re = -Q/2

 Im = sqrt(-Dis)

 show_line "---Complex Roots---"; show_nl

 show_line "X2 = (" @Re ", +" @Im); show_nl

 show_line "X3 = (" @Re ", -" @Im)

end_if

end

#---#

#---pretty print subroutine---

show_cubic:

show_nl; show_field "==> Cubic: "

if A=1; show_field "x^3"

else_if A=-1; show_field "-x^3"

else_if A; show_field @A " x^3"

end_if

if B=1; show_field " + x^2"

else_if B=-1; show_field " - x^2"

else_if B>0; show_field " + " @B " x^2"

else_if B; show_field " - " @-B " x^2"

end_if

if C=1; show_field " + x"

else_if C=-1; show_field " - x"

else_if C>0; show_field " + " @C " x"

else_if C; show_field " - " @-C " x"

end_if

if D>0; show_field " + " @D

else_if D; show_field " - " @-D

end_if

show_line " = 0"; show_nl

return

#---#

#---special cases subroutine---

check_special:

if ~A&~B&~C; // too many zeros!

 exit "No solution!"

end_if

if ~A&~B // linear case

 show_line "X1 = " @-D/C; show_nl

 exit "X2 = X3 = no solutions (linear case)"

end_if

if ~A&B // quadratic case

 Q = sq(C)-4*B*D

 if Q>0|Q=0

 show_line "X1 = " @(-C+sqrt(Q))/2; show_nl

 show_line "X2 = " @(-C-sqrt(Q))/2; show_nl

 else

 show_line "---Complex Roots---"; show_nl

 Re = -C/2

 Im = sqrt(-Q)/2

 show_line "X1 = (" @Re ", +" @Im); show_nl

 show_line "X2 = (" @Re ", -" @Im); show_nl

 end_if

 exit "X3 = no solution (quadratic case)"

end_if

return

#---#

As shown, the output is:

==> Cubic: x^3 + 3 x^2 + 3 x + 1 = 0

Real Root... 33 iterations

X1 = -1

X2 = -1

X3 = -1

2.3 Computations and Data Files

This is a typical application routine that computes mathematical quantities and writes the result to a file for analysis.

#----compute kernel quantities----

set_tab 15

show_lab H 1/N1 1/N2 1/N3

$datf = ker.csv

write_lab $datf H N1 N2 N3

begin_loop_i = .01 1.1 .1

 H = i

 N1 = 1.5*H

 N2 = 0.7*pi*sq(H)

 N3 = pi*cub(H)

 show_tab H 1/N1 1/N2 1/N3

 write_dat H N1 N2 N3

end_loop_i

show_nl

N1N2 = 1/(1.5/(0.7*pi))

N1N3 = 1/(1.5/(pi))

show N1 N2 N3; show_nl

show_line "N2/N1= " @N1N2 " N3/N1= " @N1N3

The screen output is:

 H 1/N1 1/N2 1/N3

 0.01 66.6667 4547.28 318310

 0.11 6.06061 37.5809 239.151

 0.21 3.1746 10.3113 34.371

 0.31 2.15054 4.73183 10.6848

 0.41 1.62602 2.70511 4.61847

 0.51 1.30719 1.74828 2.3996

 0.61 1.0929 1.22206 1.40236

 0.71 0.938967 0.90206 0.889355

 0.81 0.823045 0.693078 0.598956

 0.91 0.732601 0.549123 0.422402

 1.01 0.660066 0.445768 0.308948

N1 = 1.515 N2 = 2.24332 N3 = 3.23679

N2/N1= 1.46608 N3/N1= 2.0944

The file ker.csv contains:

H,N1,N2,N3

0.01,0.015,0.000219911,3.14159e-006

0.11,0.165,0.0266093,0.00418146

0.21,0.315,0.096981,0.0290943

0.31,0.465,0.211335,0.0935912

0.41,0.615,0.369671,0.216522

0.51,0.765,0.57199,0.416735

0.61,0.915,0.818291,0.713082

0.71,1.065,1.10857,1.12441

0.81,1.215,1.44284,1.66957

0.91,1.365,1.82109,2.36741

1.01,1.515,2.24332,3.23679

Excel can read the file and produces this data plot:

[image: image2.png]a5

25

15

i
S

08 1

12

1
-2
W

2.4 Data Entry

This is a generic code for data entry for either keyboard or file (data.s). If the data is entered from the keyboard, it is then written to a file. Here the arrays X and Y are entered; modify as needed.

#---default data file---

$datf = dat.csv // default data file

#---data entry if desired---

Enter = false

query "Enter Data?" Enter

if Enter

 show_nl;

 show_line "Enter Data, type 'done' when finished"

 show_nl;

 begin_loop_i = 1 400

 input X[i] Y[i] //<---customize

 break_if eof

 end_loop_i

 N = i-1

 if N=0; exit "Zero points in table"; end_if

end_if

input $datf // change data file name?

#---read or store data---

if Enter

 write_lab $datf X Y //<---customize

 begin_loop_i = 1 N

 write_dat X[i] Y[i] //<---customize

 end_loop_i

 show_line "File " $datf " written"

else

 read_lab $datf

 begin_loop_i = 1 400

 read_dat X[i] Y[i] //<---customize

 break_if eof

 end_loop_i

 N = i-1

 if N=0; exit "Zero points in table"; end_if

 show_line "File " $datf " read"

end_if

show_line "--> " @N " points in table"

After this code segment is run, the data are available for use in an application. In some cases, it may not be necessary to store the data in arrays, but do the computations “on the fly”. For these cases insert the computation section in the appropriate loop.

2.5 Interactive Programming

This example computes a 3-dimensional random walk with Gaussian intervals. The number of steps is an input quantity. After the first computation, the program repeats with the option of either extending the previous result or starting a new path. The result is written to the file “walk.csv”. Note how the I/O is separated from the computation.

show_line "----3D Random Walk----"

show_nl

N = 5000

Reinit = true

do_i = 1 100 // multiple passes

 show_field "Steps?"

 input N

 if i>1

 query "Reinit?" Reinit

 end_if

 call walk: // do it here

 show_line "...done, continue/repeat?"
end_i

end

#-----------------------------#

walk:

#---inits---

init_var N = 1000

init_var Reinit = true

if Reinit

 do_i = 1 3

 D[i] = 0

 end_i

 write_lab walk.csv Num Dx Dy Dz

end_if

#---compute---

do_i = 1 N // compute here

 do_j = 1 3

 D[j] = D[j]+rang

 end_j

 write_dat i D[1] D[2] D[3]

end_i

return
Here is a typical result, colored on Num, plotted with Thor:

[image: image3.png]

3 System Generated Variable Names

The S_tran language uses two sorts of reserved variable names. The first type consists of system functions and constants. These items are part of the language, begin with a lower case letter, and are listed in sections 1.3 of this manual. The second type of reserved name is used for user variables that begin with an upper case letter, but are generated by the system for various specialized applications. Although it is unlikely that this will cause problems, it is necessary to be aware of the variable names so defined to avoid duplication and possible conflicts. Note that if this type of problem is suspected, the local variable can be defined as “constant” and any system references will be flagged as errors. The following is a list of the currently defined variable names.

Data input:

Nfields – number of fields found in a read_dat, or read_line command.

Nfields, $Field[] – used by read_list command.

Nfields, $Labels[] – used by read_lab command.

Nfields, Vars[] – used by read_dat command.

N, M, $Labels[], X[][] – used by read_dat_2.

Strings:

$Dlm – delimiter set by set_delim command.

S_len – string length in str_len.

$S_char – charcter found in an str_char command.

S_comp, S_eq, S_off – used by str_eq command.

S_found, $S_head, $S_tail – used by str_sub.

Applications:

N, M, X[][] – used by sort.

N, M, X[][], Y[], Z[] – used by solve.

X_s, F_s(), Tol_s, Uc_fact, Converge_s, Max_passes_s – used by update_X_s (secant).

X_g, F_g(), Tol_g, Converge_g, Gsearch – used by update_X_g (extremum).

F_eig[], Nfact, F_load[][] – used by factor.

M, N, $Label[] , X[][] , NVars, B0, Vars[], Coeffs[], SY, SB[] – used by mult_regress.

N_clust, Var_clust – used by cluster.

N, Xdat[], Ydat[], F_min[], Th_min[], Signf[], SN_ratio – used by pdm, pdm2.

N, Xdat[], Ydat[], NHdat, Hdat[], Fdat[] – used by lomb.

4 S_tran Language Summary
2.00
© Stellingwerf Consulting - 2021
Math Operators:

+ - * / ^ %

Unary: - ~

Boolean Operators:
= > < ~ & |

(true = non-zero, false = 0)
Constants:

true false pi ee deg ran ran2 rang ranw i j k eof err qq ver dec wid $date

Math Functions:
abs() sign() int() floor() ceil() ip() fp() sq() sqrt() cub() cbrt() sin() asin() cos() acos() tan() atan() log() ln() exp() exp10() spl() max(explist) min(explist) if(test, ans1, ans2, ans3)

User Variables:

Var = exp Var[exp1] = exp Var[exp1][]... = exp Var$ = exp (loc)

$Var = str
 str_len $str
str_char $str #
 str_cap $str

str_eq $str1 $str2
 str_ran $str len beg end
 str_tofloat Var = $Str

User Functions

function Fn_name(Arg1$,Arg2$,...) = expression
Init Commands:

seed #|ran
init_var Var = # (set if not defined)
constant [t/f]
Display Commands:
show exp1 exp2...

show_line “string1” @exp1 “string2” ...

show_nl
 decimals # [width] show_field “string1” @exp1 “string2” ...

Table Commands:
set_tab #
show_lab(0) lab1 lab2 ...
show_tab(0) exp1 exp2 ...

Input Commands
:
input Var1 Var2 ...

input0 Var1 Var2 ... (no prompt)
query “query string” [y/n/Var]
(result in qq [and Var])
Program Flow:
begin_loop_i = beg end [incr]
end_loop_i
(for_i / do_i / end_i)

begin_loop_j = beg end [incr]
end_loop_j
(for_j / do_j / end_j)

begin_loop_k = beg end [incr]
end_loop_k
(for_k / do_k / end_k)

continue
continue_if test
break
break_if test

if test

else_if test
else
end_if

goto label:

end

exit “string”

call label: [file]
return
read_file file

Meta Commands:

exec $CmdString

system “system command”

Debug Commands:
debug [test]
step [test] exp! (debug expression)
 noexit [t/f]
Data I/O:

write_line file “string1” @exp1 “string2”... write_field....
close_file file

read_line file Var1 Var2 ... read_line file $Line

read_list file

write_lab file lab1 lab2 ...

write_dat exp1 exp2

read_lab file [$lab2 $lab2 ...]
read_dat [Var1 Var2 ]

set_delim comma|space|tab|slash

read_dat_2 file

write_var file Var1 Var2 ...
read_var file Var1 Var2 ..

Math Applications:
solve
(solve a set of linear equations)
sort (sort an array)

pdm2

lomb
 [plus control commands for both]

set_weib lower center N shape

Statistics Package:
mult_regress [file] [log]
set_mr_vars # #..
 set_mr_tols F1 F2 tol

coranal [file]

set_ca_params threshold

factor [file]

set_fa_params threshold highlight

cluster [file]

set_cl_params sensitivity

� EMBED Word.Picture.8 ���

(2021 Stellingwerf Consulting

Blank Page

PAGE
21

_1030259910.doc
[image: image1.png]

