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LIMIT-CYCLE BEHAVIOR IN ONE-ZONE CONVECTIVE MODELS
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ABSTRACT

We present the results of a detailed set of one-zone models that account for the coupling between pulsation and
convection following the original prescriptions of Stellingwerf. Motivated by the arbitrary nature of the input
parameters adopted in this theoretical framework, we computed several sequences of models that cover a substantial
fraction of the parameter space and a longer integration time. We found that our models show the same behavior as
nonlinear, hydrodynamic models, that is, they approach either the limit-cycle stability (pulsational instability), the
fixed point (pulsational stability), or their present vibrational instability. In agreement with Stellingwerf, we find
that convection is the main quenching mechanism for pulsational models located across the Cepheid instability strip.
Moreover, our one-zone models can mimic the pulsational behavior of both fundamental and first overtone Cepheids.
We also included a turbulent pressure term and found that this physical mechanism plays a crucial role in the pulsation
characteristics of the models by removing the sharp discontinuities along the light and the velocity curves shown by
models that do not account for turbulent pressure. Finally, we investigated the vibrational and pulsational stability of
completely convective models. We consider the most important finding of the present work to be the identification of
a well-defined region in the parameter space where they approach limit-cycle stability. The inclusion of turbulent
pressure widens this region, thus supporting original suggestions based on both linear and nonlinear models of long
period variables (LPVs). Several numerical experiments performed by adopting different values of the adiabatic
exponent and of the shell thickness indicate that the coupling between pulsation and convection is the key driving

mechanism for LPVs, a finding supported by recent theoretical predictions.

Subject headings: Cepheids — convection — stars: oscillations — stars: variables: other

1. INTRODUCTION

Variable stars are crucial astrophysical objects, since they can
be used as tracers of stellar populations in the framework of
galaxy evolution (Dolphin et al. 2002; Monelli et al. 2003).
Moreover, the comparison between the observables predicted
by pulsational models and the observations themselves supplies
an independent estimate of the stellar parameters (Bono et al.
2001; Kervella et al. 2001). This implies that stellar pulsations
provide a way to probe regions of the star that would be oth-
erwise inaccessible to direct observations. Therefore, variable
stars provide the unique opportunity to investigate the plausi-
bility of the physical assumptions adopted to construct both
evolutionary and pulsational models (Bono et al. 2002; Keller
& Wood 2002).

Nonadiabatic stellar pulsations are complicated phenomena,
even for small amplitudes and purely radial oscillations, to which
the linear theory is applicable. For large amplitudes, the non-
linear effects become important and the simplifying assumptions
must be treated with caution. During the last decades the work on
nonlinear stellar pulsations has been developed along three main
approaches: simple one-zone models, the formalism of ampli-
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tude equations, and hydrodynamic models. Although the third
approach provides the most detailed and accurate physical de-
scription of the outermost stellar layers during the pulsation
cycle, it is also true that it is difficult to figure out whether the
intrinsic features of the models are either a direct consequence
of the adopted physical assumptions or caused by the numeri-
cal methods and the spatial resolution adopted to discretize
the stellar structure into a series of concentric shells (see, e.g.,
Petroni et al. 2003 and references therein). It is within this frame-
work that simple one-zone models (Baker 1966; Saitou et al.
1989; Unno & Xiong 1993; Icke et al. 1992; Tanaka 2001) and
the amplitude equation formalism (Dziembowski & Kovacs
1984; Buchler & Kovacs 1986; Ishida & Takeuti 1991; Saitou
1993) play a key role. The advantages and drawbacks of these
approaches have already been widely discussed in the literature
(see, e.g., Buchler 1998 and references therein; Tanaka 2001). In
particular, one-zone models have been introduced with the sole
purpose of clarifying the analysis by eliminating possible subtle
uncertainties introduced by the stability of numerical algorithms
and by spatial resolution. This was accomplished by considering
the stellar envelope as a one-zone structure: a single, relatively
thin, spherical mass-shell concentric with the stellar center. These
models have provided clear understanding of the destabilization
mechanisms and of the possible consequences of couplings as
well as feedbacks between several phenomena associated with
stellar variability (see Baker 1966; Usher & Whitney 1968;
Saitou et al. 1989; Unno & Xiong 1993; Icke et al. 1992; Tanaka
2001).

The simplest one-zone model that accounts for the cou-
pling between pulsation and convection was suggested by
Stellingwerf (1986). Following the convective scheme developed
by Stellingwerf (1982), he derived a one-zone pulsational model
that includes a time-dependent convective term. He computed a
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set of models associated with the Cepheid instability strip, in-
tegrating them only for a few dynamical timescales. The results
of this work support the generally accepted view that convec-
tion is a damping mechanism, particularly for models located
close to the cool edge of the instability strip. Although the pul-
sationally unstable region and the velocity curves were in qual-
itative agreement with empirical data, he also found that fully
convective models underwent vibrational instability for certain
values of the parameters. A similar approach was also adopted
by Unno & Xiong (1990, 1993) and by Saitou (1993), but they
did not discuss in detail the pulsational and dynamical behavior
of their models.

In this work, we present new results and possible extensions
of the one-zone model developed by Stellingwerf (1986), in-
vestigating the limit-cycle behavior (pulsational instability) and
accounting for the role of the turbulent pressure and of the
thickness of the convective layer. The paper is organized as fol-
lows. In § 2 we present the one-zone convective model. We
place special emphasis on the adopted physical and numerical
assumptions. In § 3 we thoroughly investigate the limit-cycle
behavior of the model suggested by Stellingwerf (1986), an
issue marginally addressed in the original paper. In this section
we also focus our attention on the dependence of pulsation prop-
erties on the shell thickness (§ 3.1) as well as on the turbulent
pressure (§ 3.2) and their role in determining the morphology of
light and velocity curves. In § 4 we discuss the approach to limit-
cycle stability of completely convective models and briefly de-
scribe possible empirical similarities with LPVs. Finally, in § 5
we summarize our main results and briefly outline future per-
spectives. In the Appendix we discuss in more detail the physical
assumptions adopted to include the turbulent pressure in the one-
zone model.

2. THE ONE-ZONE CONVECTIVE MODEL

In the classical theoretical framework of one-zone models,
variable stars have an equilibrium radius R and an extended
shell or envelope of variable radius R on top of a compact core
of radius R,... As detailed in Stellingwerf (1986), by accounting
for the equation of motion, the energy equation, and the equa-
tion of convective transport, the resulting dynamical system de-
scribes the evolution of the convective upper layer, and it has
the following form:

d*x
g = HX X2
T
dH .
d_ — CXZd(l _ ,erbHS-O-4 _ WCX_LU3)7
T
dU. _
A

where X and H are the radius and the nonadiabatic pressure
normalized to their equilibrium values, respectively, while U..
is related to the convective velocity and is defined as U, =
U’/ Uy, where Uy, is the equilibrium mixing-length convec-
tive velocity. Moreover, the time variable 7 is normalized to the
dynamical (free fall) timescale. As defined in Stellingwerf (1986),
the other input parameters of the model are g = ml'; — 2, d =
m(I'; —2)/2,and ¢ = m — 2, where I'; is the adiabatic exponent
and m is the so-called form factor. In the limit of small oscillations
(Stellingwerf 1972, 1986), the form factor is defined as

o log[(XP =)/ =) 3
m= &Hj} log(X) 1= @

with = R./Ry. At the same time, b =4 + m[n — (s + 4)(T'—
1)], where s and 7 are the temperature and the density exponents in
the Kramers opacity law, respectively (for more details, see Baker
1966).

The main control parameters of the model are , (., and 7.,
which are defined as follows: (1) the nonadiabatic parameter, ,
is the ratio between the dynamical and the thermal timescale;
(2) the convective efficiency, (,, is the ratio between the dynam-
ical time and the convective timescale; and (3) the convective-
radiative splitting, ., is the ratio between the initial convective
luminosity and the total initial luminosity, that is, 7. = L, /Lo,
which implies that v, = 1 — ..

The reader interested in a detailed discussion concerning the
convective timescale in the context of one-zone models is referred
to § 4 of Stellingwerf (1986). More quantitative predictions con-
cerning the different timescales connected with turbulent energy
across the envelope of variable stars have been provided by
Stellingwerf (1982), Bono et al. (1999), and Feuchtinger et al.
(2000).

The values n =1 and s = 3 for the Kramers opacity are
the standard ones, while the values for I'{, m, 7., {, and (. must
be treated with caution. The value of I'y = 1.1 adopted in
Stellingwerf (1986) is a typical value for the -mechanism
operating in the partial ionization regions (Cox 1980). The
choice of a form factor m equal to 10 (n = 0.888), considered
typical of Cepheids in Stellingwerf (1986), together with the
values chosen for the other parameters assure the turbulent
stability and the secular stability for ¢ and (. in the range [0, 10]
and 7, < 1 (Stellingwerf 1986). The values of these parameters
were arbitrarily chosen by Stellingwerf (1986) and lead to the
existence of a pulsationally unstable region (*“strip”’) for values
of 7. < 0.45. From a mathematical point of view, we refer to
such a behavior as having a limit cycle born through a Hopf
bifurcation. The stability analysis in Stellingwerf (1986) was
hampered by the fact that individual models were integrated
only for a small number of dynamical timescales. In particular,
our calculations show that for these cases, no limit-cycle sta-
bility exists. Note also that Stellingwerf (1986) analyzed only
the cases for ( and (. < 4 and that an exhaustive study of the
dependence of the limit-cycle behavior on the input parameters
remained to be performed.

In the current investigation, we have first undertaken a thor-
ough study of the dynamics in the (¢, {,)-plane for (and (. < 10
and for different values of the convective-radiative splitting, .,
following the assumption of radiative-dominated energy trans-
port (7. < 0.5). We have used the same form factor (m = 10)
and the same initial condition (Xo, Vo, Ho, U,) = (1.4, 0.0,
1.0, 0.7) adopted by Stellingwerf (1986). We have furthermore
assumed that a case is pulsationally unstable (limit-cycle behav-
ior) when two consecutive maxima in radius variations differ by
less than 107 and pulsationally stable (damping oscillations)
when the solution asymptotically approaches the fixed point (X,
Vv, H, U)=(, 0, 1, 1) and its distance to the fixed point
becomes smaller than 10~8. The solution was considered to be
vibrationally unstable when the rapidly increasing dimension-
less radius amplitude became larger than 15. These thresholds
are reasonable values. Moreover, we have also verified that the
resulting qualitative dynamics does not depend on the choice
of these values. Of course, one could use as well the asymptotic
perturbation theory to compute the properties of the limit cycle.
Nevertheless, such an approach is beyond the aims of the cur-
rent investigation, and we consider it as a future line of work.
For a better understanding of our results, we illustrate in Fig-
ure 1 the three types of dynamical behavior we have identified.
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Fic. 1.—Examples of dynamical behavior for 7. = 0.4. Radius time series
for stable [((., ) = (3, 4); top], limit-cycle [({., ¢) = (1.5, 1.5); middle], and
unstable behavior [((., ¢) = (0.5, 0.5); bottom].

The top panel shows an example of pulsational stability, i.e., the
initial perturbation decays. The bottom panel shows a vibra-
tionally unstable model (the initial perturbation grows), while
the middle panel shows the time series of a case that approaches
a limit-cycle stability (pulsational instability). Note that for
small amplitudes (7 < 100) the case plotted in the bottom panel
seems to approach a limit cycle, but for 7 > 200 it becomes
clear that the amplitudes are steadily increasing. This finding
further strengthens the need for long time integrations to assess
the type of stability for the individual one-zone models. As a
final comment on the numerical assumptions considered in the
present work, it is worth mentioning that the dynamical be-
havior of the system is independent of the initial condition,
provided that it belongs to the neighborhood of the fixed point
X, V, H, U)=(, 0, 1, 1). Therefore, we did not investi-
gate the dependence of the characteristics of the time series on
initial conditions.

3. LIMIT-CYCLE CHARACTERISTICS

One-zone models can be adopted to perform only a qualita-
tive comparison with pulsation properties of variable stars.
Moreover, this comparison is limited to observables that one-
zone models can account for, in particular, the shape of light and
velocity curves—originally suggested for RR Lyrae stars by
Stellingwerf & Donohoe (1986)—and the occurrence of first
overtone pulsators (Stellingwerf et al. 1987). The most inter-
esting results disclosed by our simulations are presented in Fig-
ures 2a—2e, where the regions of damped oscillations are shown
in gray, the regions where the radial displacements approach a
limit cycle are marked in black, and vibrationally unstable cases
are shown in white. A glance at the data plotted in Figure 2
discloses that with the exception of the case in which v, = 0.1,
an increase in 7y, causes a decrease in the region of pulsationally
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unstable cases and that for v, = 0.5 it vanishes. These findings
support the results originally obtained by Stellingwerf (1986)
concerning the damping role of convection. In addition to the
radius (X)) and velocity (V) curves chosen to be illustrated in
Stellingwerf (1986), we have added the light (L) curve and in sev-
eral occasions the temperature (7') variations, estimated accord-
ing to

L* L*r L*c 3 —C
LE—:;:’}/,»X[)H&H""’YCX LU?7 (3)
L() LO ‘
T
—=x My (4)
To

where L, denotes the stellar luminosity, while the subscripts r
and c refer to the radiative and convective components, respec-
tively, as they result from Stellingwerf (1986). Figure 3 shows
the light curve L and the radius X and velocity ¥ time series for
selected cases that approach limit cycle. Note that to improve
the visualization of data plotted in Figure 3, we subtracted from
the integration time 7 the time interval spent by individual mod-
els to approach the limit-cycle stability. We have chosen to il-
lustrate cases at fixed v, and (. values and with ¢ ranging from
0.7 to 6.5, being typical examples of the qualitative dynamics
encountered. The time series plotted in Figure 3 show that the
cases characterized by parameters located close to the edge of
the pulsational stability region (Fig. 2, gray area) present small
amplitudes and sinusoidal changes (Fig. 3a). These features are
quite similar to the behavior that nonlinear, convective models
show close to the blue edge of the instability strip (see, e.g.,
Bono et al. 2000). On the other hand, models that are located
across the pulsationally unstable region (Figs. 35 and 3¢) show
a bump along the rising branch of the luminosity curve. Our cal-
culations reveal that such a feature is due to the sharp increase in
the efficiency of the convective motions, close to the phase of
minimum radius. This finding is also found in nonlinear hy-
drodynamic models.

One can notice that for cases located close to the vibrationally
unstable region, the bump becomes very narrow (Fig. 3d) and
pulselike (Fig. 3e). This is a behavior that is not observed in ac-
tual Cepheids, and it is not supported by nonlinear, convective
models. This indicates the limit of the crude physical and nu-
merical approximations adopted to construct our models. How-
ever, our analysis suggests that the limit-cycle behavior of these
one-zone models in the pulsationally unstable region mimics
the behavior of the classical Cepheids instability strip, as argued
in the original paper of Stellingwerf (1986). Finally, we note
that the period of the oscillations of the cases plotted in Figure 3
is not unity, even if the dynamical timescale was normalized to
unity. This strong nonlinear effect on the period was already
noted by Stellingwerf (1986), who suggested that it was due to a
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Fic. 2.—The (¢, (.)-plane for several values of v.: (a), 7. = 0.1, (b) 7. = 0.2, (¢) 7. = 0.3, (d) 7. = 0.4, and (e) 7. = 0.5, representing pulsationally unstable

(black), pulsationally stable (gray), and vibrationally unstable behavior (white).
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Fic. 3.—Limit-cycle characteristics. From top to bottom the panels show the total luminosity L, the radiative luminosity L, = L., /Ly, the convective luminosity
L. = L../Ly, and the dimensionless radius X and velocity } variations. The temporal axis is represented as 7 — 7, where 7. is the time value when the limit cycle has
been achieved. The parameters adopted to construct the individual cases were chosen from Fig. 2b: (a) small amplitude, (¢, () = (6.5, 3); (b) bump Cepheid,
(¢, ¢)=(5.5, 3); (c) double-peak Cepheid, (¢, () = (4, 3); (d) steep bump, (¢, () = (1.5, 3); and (e) pulselike, (¢, ¢.) = (0.7, 3).

correlation with the pulsation amplitude (see also Stellingwerf
& Donohoe 1986).

3.1. The Shell Thickness

In this section, we present the results concerning the impact
of the shell thickness on the existence of limit-cycle behavior
and on its characteristics. According to classical physical ar-
guments, pulsational models only account for the envelope of
variable stars (Cox 1980). They include a damping, adiabatic
region that is typically located on top of the nuclear-burning
region (core), a transition region, a driving, nonadiabatic re-
gion, and the outermost layers (surface). The driving region is
the envelope zone where key elements (hydrogen, helium, and
metals) are partially ionized and supply, via the k- and/or the
~y-mechanism, the pulsation destabilization. In this theoretical
framework, the base of the envelope in nonlinear, hydrody-
namic models is typically located at a few percent of the total
radius (Petroni et al. 2003).

As far as the one-zone model approach is concerned, differ-
ent assumptions have been adopted in the literature. The one-

(b)

(©)

zone model suggested by Icke et al. (1992) for Mira variables
accounts for a driving region (piston approximation) at X ~
0.2-0.4, a transition region through which the pressure waves
from the interior propagate, and a dissipation region that they call
mantle. On the other hand, the one-zone model of Stellingwerf
(1986) for variable stars in the Cepheid instability strip accounts
for a driving convective region located at X ~ 0.85 on top of
a damping, adiabatic region (“rigid core”). In this theoretical
framework, the pulsation destabilization is provided by a driving
agent (I} < 4/3). The two different assumptions describe the
same envelope region if the rigid core assumed by Stellingwerf
(1986) is the outer boundary of the damping region. Therefore,
the “shell thickness,” (1 — n) in dimensionless formulation, is the
radial extent of the region located above the boundary between
the damping (adiabatic) and the driving (nonadiabatic) region.
To investigate the dependence of the dynamic behavior of the
system given in equation (1) on the shell thickness, we have
chosen two values of the shell thickness, one smaller and the
other larger than the value adopted in Stellingwerf (1986): n =
0.75 and 0.92. We illustrate in Figures 4 and 5 the behaviors in
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Fic. 4—The (¢, ¢.)-plane for several values of .. Eq. (1) has been used with n = 0.75: (@) 7. = 0.1, (b) 7. = 0.2, (¢) 7. = 0.3, (d) 7. = 0.4, and (e) 7. = 0.5,
representing pulsationally unstable (black), pulsationally stable (gray), and vibrationally unstable behavior (white).
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Fic. 5.—The (¢, ¢.)-plane for several values of 7. Eq. (1) has been used with = 0.92: (a) . = 0.1, (b) 7. = 0.2, (¢) 7. = 0.3, (d) 7. = 0.4, and (e) 7. = 0.5,
representing pulsationally unstable (black), pulsationally stable (gray), and vibrationally unstable behavior (white).

the (¢, {.)-plane for 7, < 0.5. One can notice that the increase in
the shell thickness (decrease of 7)) leads to the existence of
pulsational instability for cases characterized by stronger con-
vection (higher values of v,). This effect is expected, because a
decrease in n implies an increase in the extent of the driving
region. Moreover, we have noted that for a fixed value of . and
different values of 7, the period distribution of the cases that
approach a stable limit cycle peaks at shorter periods as the shell
thickness decreases. This behavior is also expected, since de-
tailed nonlinear, hydrodynamic models of RR Lyrae (Bono &
Stellingwerf 1994) and classical Cepheids (Bono et al. 1999)
suggest that the regions located below the nodal line supply a
small contribution to the work integral of first-overtone pulsa-
tors. This supports the suggestion by Stellingwerf et al. (1987)
to decrease the shell thickness of one-zone models in order to
mimic the dynamical behavior of overtone pulsators.

3.2. The Turbulent Pressure

Convection affects pulsation through three factors, namely,
convective energy transfer (thermodynamic coupling), turbu-
lent pressure, and turbulent viscosity (dynamic coupling). The
effect of turbulent viscosity is to convert the kinetic energy of
radial motions into thermal energy by means of a turbulent
cascade of smaller and smaller turbulent eddies. This means that
the turbulent viscosity is a pure damping factor (Stellingwerf
1982; Xiong et al. 1998; Yecko et al. 1998). The role that tur-
bulent pressure plays in driving or damping the pulsation is not
straightforward, since the contributions of gas and turbulent
pressure cannot be easily separated. Linear (Yecko et al. 1998)
and nonlinear (Bono et al. 1999) convective models of classical
Cepheids suggest that the work done by turbulent pressure at-
tains both positive (driving) and negative (damping) values in
different regions of the envelope. Linear and nonlinear convec-
tive LPV models constructed by Ostlie & Cox (1986) and by Cox
& Ostlie (1993) indicate that turbulent pressure is a driving
mechanism, whereas more recent calculations by Xiong et al.
(1998) support the evidence that it is a damping mechanism.

(a)

ux
LI L A B B

The turbulent pressure, P;, was not included in the original
one-zone model by Stellingwerf (1986), but it was briefly
mentioned as being

P ¢ —myr2
P, =X"U;, (5)
where the zero subscript denotes its equilibrium value. In this
section, we present the results obtained by the introduction of
the turbulent pressure. The reader interested in a detailed de-
scription of the physical assumptions adopted to include the
turbulent pressure term in equation (1) is referred to the Ap-
pendix. The new dynamic system now becomes

X .
5= (1— )X h+ a,X U — X2,

=

aH _ map(F3 - I)de—l d_XUz

dr 1 —aq, dr ¢

— (XU X 4 (1= )X U — 1],
du,
= (X*"Hl/2 - UC). (6)

We have undertaken a parametric study in order to investi-
gate the influence of the turbulent pressure on the overall dy-
namics of the system and implicitly on the existence of limit
cycles. For this purpose, we have chosen the same initial con-
dition as in § 2, that is, (Xo, Vo, Ho, U,) = (1.4, 0.0, 1.0,
0.7), which led to a value of o, = 0.4. The results concerning
the (¢, ¢.)-plane are shown in Figure 6, using the color code
from Figure 2. The regions characterized by the existence of
limit cycles for 7, < 0.5 are more extended than in the case
without turbulent pressure, as expected because the additional
pressure adds to the driving mechanism.

We have also investigated the light and velocity curves for
the cases characterized by limit-cycle behavior. From the hy-
drodynamic models as well as from plain physical arguments on

(e)

o
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I | | |
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Fic. 6.—The (¢, (.)-plane for n = 0.888 and several values of . when the turbulent pressure is included: (a) 7. = 0.1, (b) 7. = 0.2, (¢) 7. = 0.3, (d) 7. = 0.4,
and (e) 7. = 0.5, representing limit-cycle (black), stable (gray), and vibrationally unstable behavior (white).
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FiG. 7—Limit-cycle characteristics when the turbulent pressure is introduced. From top to bottom the panels show the total luminosity L, the radiative luminosity
L, = L., /Ly, the convective luminosity L. = L../Ly, and the radius X and the velocity V" variations. The temporal axis is represented as 7 — 7c, where 7 is the time
value when the limit cycle has been achieved. The parameters adopted to construct the individual cases are = 0.888; . = 0.4; and (a) (¢, ¢.) = (4, 0.28),
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the existence of the Cepheid instability strip, it is expected that
by crossing the instability strip from the blue to the red edge, the
period increases and the amplitude of the oscillations quickly
reaches its maximum and then slowly decreases. In order to
obtain a similar evolution of the amplitude from this one-zone
model, the limit-cycle region must be bounded in the (¢, (.)-
plane by pulsationally stable regions both to the left (low values
of (.) and to the right (high values of (.). If bounded by a
vibrationally unstable region, the oscillations that result from
using parameters close to this boundary are pulselike and the
amplitude is large, as in Figure 3e. One can notice that for the case
of zero turbulence pressure, the limit-cycle region is bounded to
the left by the vibrationally unstable behavior, and thus the above
condition is not satisfied. However, with the introduction of the
turbulent pressure, there exists a case for which the limit-cycle
region is bounded in the ({, {.)-plane both to the left and to the
right by the pulsationally stable behavior (Fig. 6d). For this case,
we present in Figure 7 the types of light and velocity curves
obtained in the transition from the hot (blue, low () to the cool
(red, high (.) edge, at constant (. One can notice that the am-
plitude has a peak toward the center of the limit-cycle region and
then it decreases. Even more importantly, data plotted in Figure 7
disclose that one-zone models that account for turbulent pressure
do not present, in this region of the parameter space, the spurious
secondary peak along the rising branch. The morphology of light
and velocity curves plotted in Figure 7 are in qualitative agree-
ment with actual classical Cepheids and with nonlinear, con-
vective models.

4. THE RED VARIABLES

Stellingwerf (1986) remarked on a paradox of the present one-
zone model: “although the convection tends to stabilize the
pulsation in the majority of cases, the completely convective
case shows instability in every criterion.” We have verified that
indeed the present model with a fully convective (7. = 1) thick
shell (m < 8 or 1 < 0.85) presents vibrational instability for

any (, (. < 10. However, for a thin shell, our simulations
revealed that while no limit-cycle regions exist for the cases
with0.5 < v, < 1.0and ¢, ¢, < 10, limit-cycle models exist for
the case of fully convective shells. Figure 8a shows the ((, (,)-
plane for v, = 1.0, n = 0.888 and without turbulent pressure.
Although the current analysis relies on simple one-zone mod-
els, this is a very interesting finding, and we are tempted to at-
tribute this region of the (¢, {.)-plane to the instability strip of
LPVs—variable red giants and supergiants—which are thought
to be significantly nonadiabatic and highly convective. There is
general agreement within the astrophysical community that the
intrinsic reason for the existence of the red edge of the Cepheid
instability strip is the damping produced by convection. How-
ever, theoretical and empirical evidence suggest that convection
might also be a destabilizing mechanism in the cool region of
the H-R diagram (Fox & Wood 1982; Edmonds & Gilliland
1996; Xiong et al. 1998; Wood 2000; Christensen-Dalsgaard
et al. 2001; Dziembowski et al. 2001; Kiss & Bedding 2003;
Ita et al. 2004). When the convective timescale is much longer
than the dynamical timescale ({, < 1), the effect of convec-
tion is stabilizing, but when the convective timescale is much
shorter, the reverse is true (Gough 1967). Thus, it may provide
an important driving mechanism in red giants and supergiants.
More precisely, the convective luminosity in the ionization re-
gions of red pulsating variables is expected to exceed 99% of
the total luminosity, as mentioned by Xiong et al. (1998). They
identify a Mira instability strip outside the Cepheid instabil-
ity strip when pulsation-convection interaction is taken into
account.

To investigate the effect of the turbulent pressure in the case of
a completely convective shell, we have identified in the (, .)-
plane the regions characterized by limit-cycle behavior. We il-
lustrate the results in Figure 8b. The region of limit cycles for the
completely convective case persists when the turbulent pressure
is introduced. Compared to the cases with no turbulent pressure,
this region shifts to smaller values of the convective efficiency,
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Fic. 8.—The (¢, (.)-plane for the completely convective shell illustrated
in the spirit of Fig. 2 for 7, = 1.0 and n = 0.888 and (a) for no turbulent pres-
sure and (b) with turbulent pressure included. (c) Time series for the luminosity L,
radius X, velocity ¥, pressure H, convective velocity U,, and temperature 7 for a
Cepheid-like (solid line: v, = 0.2, (. = 1.2, ¢ = 8) and a LPV-like variable star
(dashed line: v, = 1.0, {, = 9, ( = 7.5); the latter case was extracted from («).

(.. This shift occurs because the minimal perturbation strength
necessary to drive the pulsational instability is achieved at weaker
convective driving (smaller ¢.), as the rest of the driving is now
provided by the turbulent pressure.

Before verifying that convection is the driving agent for the
completely convective shell, we briefly describe the pulsation
characteristics of the models constructed by adopting 7. = 1.0
and compare them with the previously discussed limit cycles.
For comparative purposes, Figure 8c shows the time series of a
“Cepheid” (7, < 0.5) and of a “LPV” model (7, = 1.0). The
increase both in period and amplitude observed in this figure
when passing from a Cepheid-like to a LPV-like model supports
the previous working hypothesis. In this context it is worth
mentioning that Cepheid-like pulsators show the well-known
phase lag between the light and the velocity curve. The pulsa-
tion behavior of the LPV-like model needs to be discussed in
more detail. The data plotted in the top and bottom panels show
a very small phase lag between the light and the temperature
changes. This evidence appears to be supported by infrared
spectroscopic data (Hinkle et al. 1982, 1984) of pulsating asymp-
totic giant branch (AGB) stars. However, the maximum in the
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FiG. 9.—Variation of the luminosity L, radius X, velocity ¥, pressure H, and
convective velocity U,, for the case of completely convective shell close to the
vibrationally unstable edge ((. = 8.7, ( =9). The case of zero turbulent pres-
sure was considered.

light curve takes place before the minimum in the velocity curve.
This finding is at odds with observational data for Mira and
semiregular variables, since the minimum velocity is not corre-
lated with light maxima (Hinkle et al. 1982; Lebzelter et al.
2000; Lebzelter & Hinkle 2002). Nevertheless, the comparison
between theory and observations is hampered by the occurrence
oflong secondary periods (Hinkle et al. 2002; Wood et al. 2004),
and indeed in a few objects the minimum in the velocity curve
takes place later than the maximum in the velocity curve—y
Oph, R Leo (Hinkle et al. 1984), and S Lep (Wood et al. 2004).
In passing we would also like to draw attention to the correlation
between light maxima and convective velocity, since the maxi-
mum takes place just before maximum light. We are not aware of
macroturbulent velocity measurements in LPVs, and new ob-
servations would be very useful to constrain the plausibility of
the physical assumptions adopted in simple one-zone convective
models.

For completeness, we illustrate in Figure 9 the time behavior
of a model located close to the vibrational instability edge after
approaching limit-cycle stability. This example is generic for all
the cases with or without the turbulent pressure close to the
vibrational-instability edge for the completely convective shell.
The data plotted in Figure 9 show a well-defined bump along
the decreasing branch of the light curve. This bump becomes
more pronounced as the values of the parameters ¢ and (. ap-
proach the vibrational-instability edge, while the peak of the
luminosity becomes a pulselike feature. The occurrence of such
secondary features is quite typical along the light curves of Mira
variables (Wood et al. 2004). Moreover, the occurrence of the
luminosity maximum appears strongly correlated with the var-
iation of the convective velocity U,, while the bump is in phase
with the change of the radial velocity V.

Similar to the limit cycles for the weakly convective cases
associated with the classical Cepheids, it is highly speculative
to attribute specific values of the parameters ¢ and (. to different
types of LPVs. A more detailed investigation of the parameter
space is mandatory to pinpoint the pulsation properties of com-
pletely convective one-zone models that mimic red giant branch—
like or Mira-like behavior.

4.1. The y-Mechanism

As a natural further step into clarifying the origin of the pul-
sationally unstable cases for the completely convective shell, we
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Fic. 10.—The (¢, ¢.)-plane for the completely convective shell (7. = 1.0)
and different values of n and I'y giving birth to several behaviors: limit-cycle
(diamonds), pulsational stability (dots), and vibrational instability (white re-
gions). (@) n=0.92, T, =1.1; () n=0.888, ') = 1.1; (¢) n=0.888, '} =
1.2; and (d) n = 0.888, I'; = 1.3. Eq. (1) has been used.

have investigated the role of the adiabatic exponent, I';, as
driving agent. From the mathematical perspective of the model,
the question resides in establishing the relative effect on the sys-
tem dynamics of the parameter 7., on one hand, and of the
parameter I';, on the other hand, included in the definition of
the parameters ¢ = mI'y — 2 and d = m(I"; — 2)/2. The case
of a completely convective shell translates for this one-zone
model into the disappearance of the k-mechanism, with the driv-
ing being supplied only by the y-mechanism. To test whether
the pulsational instability of our convective models is due to the
~-mechanism or to a convection-induced driving mechanism,
we studied the evolution of the limit-cycle region in the (¢, C.)-
plane as I'; is varied. The results obtained so far have used the
value I'} = 1.1, as employed by Stellingwerf (1986). We con-
jecture that if the obtained cases of self-sustained oscillations are
a product of convection-induced driving, then the ~-mechanism
has very little, if any, influence on their properties. Figures 10a
and 106 display two cases of different shell thickness, con-
cluding, as in § 3.1, that a thicker shell implies a wider range of
parameters leading to pulsational instability. In the completely
convective case, this increase causes a shift of the limit-cycle
region to lower (.. The same shift occurs by increasing the I'y
value at constant shell thickness or, in other words, by de-
creasing the efficiency of the y-mechanism (Figs. 105, 10c, and
10d). This means that convection and turbulent pressure are
driving mechanisms for fully convective models, since the re-
gion where these models display a limit-cycle stability margin-
ally depends on the adopted I'; value. This finding supports the
theoretical predictions by Xiong et al. (1998) concerning the
driving provided by the coupling between pulsation and con-
vection, but we also find that turbulent pressure is a destabilizing
mechanism instead of a damping factor for pulsation. However,
current models assume that the physical properties of the driving
region can be described by a Kramers opacity law and by a very
crude equation of state. Therefore, there is no guarantee that cur-
rent models properly account for the thermodynamical and dy-
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namical properties of the different partial ionization zones in
low-density envelope regions.

5. CONCLUSIONS

In this paper we have thoroughly analyzed the one-zone
convective model introduced by Stellingwerf (1986). The model
appears in the form of a system of four ordinary differential
equations in which the variables are the radius of the shell, the
velocity, the pressure, and the convective velocity. The non-
adiabaticity resides in the pressure, which is considered as a
nonadiabatic perturbation of the reference pressure and thus
can be considered as a nonadiabatic variable of the system. The
model accounts for the self-excited oscillations by adopting a
value for the adiabatic exponent I'; that is close to unity. The
main parameters of the system are the fraction v, of convective
luminosity with respect to the total luminosity and the timescale
ratios ¢ and (.., which are a measure of the dynamical timescale
to the thermal timescale and to the convective timescale, respec-
tively. We have extended the model by considering explicitly the
role of the turbulent pressure and the case of a completely con-
vective shell.

The one-zone models constructed by Stellingwerf (1986)
were integrated only for a few dynamical timescales, and there-
fore the approach to limit-cycle stability remained still to be in-
vestigated. To properly identify the region of the parameter
space that shows a limit-cycle behavior (pulsational instability),
we have selected a parametric space given by 7. =1 and (,
(. < 10. Our parametric study revealed well-defined regions
where limit cycles exist, born through the Hopf bifurcation. For a
typical shell thickness of 11%, pulsational instability was en-
countered only for the radiation-dominated cases (7. < 0.5),
while the increase in the shell thickness displaces this limit to
upper values of 7y... The existence of these upper values supports
the work by Stellingwerf (1986) and further strengthens the role
played by convection as a damping mechanism.

Additionally, we have undertaken a parametric study to in-
vestigate the influence of the turbulent pressure on the overall
dynamics of the system and implicitly on the existence of limit
cycles. The turbulent pressure appears to be a driving mecha-
nism, as the regions where the models approach a limit-cycle
stability are more extended than for models that do not account
for the turbulent pressure. Moreover and even more impor-
tantly, we find that one-zone models that account for turbulent
pressure do not show a spurious peak along the rising branch of
light curves. The inclusion of this term is also supported by the
occurrence in the (¢, (.)-plane of a pulsationally unstable region
bounded to the left and to the right by two pulsationally stable
regions, as expected from physical considerations and hydro-
dynamic models. Moreover, the models located in this region
display a morphology of the light curves and the velocity time
series quite similar to those of nonlinear, hydrodynamic models
and actual Cepheids.

As anatural continuation of the work by Stellingwerf (1986),
we have investigated the vibrational and pulsational stability of
completely convective models. Our predictions disclose a well-
defined region of the parameter space where these red models
approach a limit-cycle stability. The turbulent pressure appears
to be a driving mechanism, a finding that supports the results
originally brought forward by Ostlie & Cox (1986) and Cox &
Ostlie (1993) on the basis of both linear and nonlinear LPV
models but is at odds with predictions based on linear, con-
vective models provided by Xiong et al. (1998). We computed
several sequences of models by adopting different values of
the adiabatic exponent and of the shell thickness. We found, in
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agreement with Xiong et al. (1998), that the coupling between
pulsation and convection is the key physical mechanism that
drives the pulsation instability in these simple structures. We
have also performed a qualitative comparison with empirical
properties of LPVs. We have found some similarities, but only
one feature partially agrees with empirical data: the maximum
in the light curve is not correlated with the minimum in the ve-
locity curve. However, the comparison with observations might
be hampered by the occurrence of long secondary periods. We
are not aware of detailed measurements of macroturbulent ve-
locity along the pulsation cycle of LPVs; however, our models
suggest that the maximum in the light curve takes place soon
after the maximum in the convective velocity.

Current one-zone models account for the coupling between
convection and pulsation and for turbulent pressure. We in-
vestigated the sensitivity to free parameters and to the physi-
cal assumptions adopted to construct the models. However, the
treatment and the inclusion of these physical ingredients rely on
crude physical approximations. A more detailed investigation
is required before we can assess whether our current theoreti-
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cal framework might mimic the complex pulsation behavior
of LPVs, and this implies the use of the asymptotic perturba-
tion theory to compute analytically the properties of the limit
cycle. The pulsational behavior disclosed by these simple mod-
els for fully convective models will be addressed in a forth-
coming paper on the basis of nonlinear, hydrodynamic models
(A. Munteanu et al. 2005, in preparation).
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APPENDIX

THE TURBULENT PRESSURE

In order to include the turbulent pressure and its associated energy terms in the present one-zone model, one must start from the
equation of momentum and energy conservation for the treatment of convection of Stellingwerf (1982):

D(u)
"Dt
D
E(E+E,) +(P+P)

—_vpip)-ve, (A1)
p

1
= —=V(F, +F.+F). (A2)

Here as well as throughout our work, we have used the notations employed in the original investigations. In Stellingwerf (1982),
any quantity was written as x = (x) + x’, where (x) was the mean quantity and x’ the fluctuating part. In equation (A2), D/Dt =
(0/0t + (u) - V) is the Lagrangian time derivative, where u is the convective velocity, E is the specific internal energy, V' = 1/p is the
specific volume, P is the thermodynamic pressure, and

E, E%<(u’)2>7 (A3)
P = p<(u/)2>, (A4)

F. = pCpy((u'T"), (A5)
F, = §<(u’)2u> (A6)

represent, respectively, the convective energy, the turbulent pressure, and the convective and turbulent kinetic fluxes, as defined in
Stellingwerf (1982). These equations must be adapted to the one-zone model. The momentum equation translates into

de —q —cyr2 -2
F:(l—ap))( h+ oy XU, — X2, (A7)

where equation (5) has been used and the parameters are ¢ = ml'} — 2, c =m — 2, and

Py, Xy"U2
Po+Py  Xg™ ' ho + Xy "U2

Qp
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To ease the calculation, the energy equation can be divided into

L, +L) WP dp 1 9P (A9)
om  p2D3—1) 0t p(Ts—1) ot’

am pXor o
In the determination of the convective and turbulent luminosities, one can use the conservative choice of L. of equation (27) of
Stellingwerf (1986) and equation (A6) of the present work. The calculations lead to an expression for L, identical to that of .., that is,

L, = X~¢U?, while E, = U?/2. Using equations (A9) and (A10), one can get the final equation of energy conservation taking into
account the turbulence:

dh ;-1 dX ;-1

_:_map( 3 )X2d71—U3—p0( 3 )C(;(thl/zUc_XZdU3> _CXZd['YrthS+4+(1_7)‘)X76U3_1]’ (All)
dr 1 —ap dr Py

whered = m(I'y — 1)/2and v, = L,,/Lo. All the other symbols used in equation (A11) have their usual meaning. The equation for the
convective velocity coincides with the zero turbulence case, as the approximation made for its recovery uses the temperature as a
function of the thermodynamic pressure only. In the case in which the turbulent energy, F;, is neglected in equation (A2), equa-

tion (A11) becomes

dh — —m op(I's — 1)X2d71 ax
dr 1 —ap dr

U? — (X7 XPn 5 4 (1 = y)X U2 — 1. (A12)

Thus, to a first approximation, the one-zone convective model with turbulent pressure is described by equations (A7) and (A12),

while for the convective velocity equation (1) remains valid.
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