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ABSTRACT

In Paper I of this series simple models were used to generate a set of radial velocity curves showing the
effect of varying amplitude and central condensation of a star. Fourier analysis of these curves produce ampli-
tudes in excellent agreement with observations. A single parameter adequately describes the variation in the
shape of all the velocity curves considered: the skewness of the curve.

In this paper, light curves generated by a nonadiabatic nonlinear one-zone model are considered. A set of
curves with nearly constant skewness are used to show the importance of a second parameter: the narrowness
or “acuteness” of the curve, defined in the same way as the skewness parameter. This property of the light-
curve shape is responsible for the smooth variation of Fourier phases seen in RR Lyrae stars and many
Cepheids. In the one-zone model, the value of the acuteness is determined by the opacity variation in the
deep envelope below the ionization zones, and it could prove to be a probe of interior stellar structure.

Subject headings: stars: Cepheids — stars: pulsation — stars: RR Lyrae — stars: variables

I. INTRODUCTION

This is the second in a series of papers attempting to relate
observed characteristics of variable-star light curves to physi-
cal parameters of the star. In Paper I (Stellingwerf and
Donohoe 1986) a nonlinear, adiabatic one-zone model was
used to produce a grid of velocity curves of varying shapes. It
was shown that as the amplitude or central condensation of the
model is varied the velocity curve changes from sinusoidal to
“sawtooth” in shape. The parameter that best describes this
change is the “skewness,” defined to be the ratio of the dura-
tion of the falling branch of the curve to that of the rising
branch of the curve, both defined by the sign of the first deriv-
ative. It was also shown that the characteristics of observed
stars correlate well with skewness.

Fourier parameters were obtained for the models of Paper I
and compared with observations. The amplitudes agreed with
those of observed stars both in magnitude and in their varia-
tion with skewness. The phases agreed with those of particular
stars but did not vary as observed. This was shown to be due
to the constraint on the phases imposed by the “top-bottom
symmetry of the velocity curves. This symmetry is not present
in the light curves. In this paper, the analysis is extended to
light curves produced by a nonlinear, nonadiabatic model, and
the observed variation of the phases is obtained.

References to recent work in this field may be found in Paper
I, in Simon (1986), in Petersen (1984), and in Kovacs, Shlos-
man, and Buchler (1986). Further discussion of the one-zone
model, including convection, is given in Stellingwerf (1986).
The technique of Fourier analysis of variable-star light curves
is of current interest because of the resonance phenomenon
found in sequences of Cepheid light curves, and the regular
variation of the parameters for RR Lyrae stars. Although some
progress has been made in classifying observations using this
tool, very little is known about how the derived parameters
relate to the constitution of the stars themselves. This work is
an attempt to clarify this issue.

252

II. MODEL DESCRIPTION

Details of the nonadiabatic one zone model are given in
Stellingwerf (1972, hereafter S72). This model differs from the
adiabatic case discussed in Paper I in several respects.

1. The time scale is one period instead of the dynamic time;
this means that some parameters (such as {) and the velocity
scale are defined differently.

2. The density exponent m is variable. This induces larger
nonlinear effects at a given amplitude and is more realistic. It is
given by

_dlog(p)
“dlog (r)

_log [(”* — n)/(1 — )]
- log (r)

where n = r_/r, is the ratio of the fixed core radius to the total
radius.

3. To determine model parameters, the pulsation Q is speci-
fied, then # is varied to obtain unit period.

The light curves are obtained by a process of double iter-
ation: first #, the shell thickness, is varied to obtain a period of
unity, then the initial value for h, the nonadiabaticity variable,
is varied to attain periodicity. This is a device to produce
periodic light curves for a model in which the pulsations are
growing or dying (the velocity curves so obtained are not
periodic). All of these variables and techniques are described in
detail in S72.

The effects of the amplitude and shell thickness were
explored in Paper I and will not be addressed here, except to
note that moderate changes in amplitude produce almost no
change in the light-curve shape. Also, it was shown in S72 that
variation of the nonadiabaticity parameter, { (modeling a
change in effective temperature) results in variation of the
luminosity phase lag, but no change in the “upper-lower”
symmetry of the light curve. A parameter was found, however,
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that does produce this observed asymmetry: the amplitude of
the luminosity variation at the base of the pulsating shell (see
Fig. 4 of S72). In equation (14) of S72, we put

L,

—t = X_u . 2
I @
where X is r/r, and u is a parameter to be set. The value of u is
estimated in § IV to lie in the range:

u=5-10. 3)

For now, it is taken as an input quantity, and varied in the
range 0-20.
Other parameters defined in S72 are fixed at the values:

Q = 0.04, period = 1.00,
max radius = 1.10, I, = 1.10,
n=1s=3{=1 @

When a light curve has been obtained, a 10th order least-
squares Fourier fit is computed as described in Paper L. In this
case the mean Fourier amplitude, m,, is not equal to the mean
magnitude, and the standard phase shift is defined relative to
the Fourier mean, not the arithmetic mean of the curve. This is
illustrated in Figure 1: the standard phase convention used
here is to define a phase of 0.5 to be the phase of m, on the
rising branch.

III. MODEL RESULTS

Six standard models were computed in the fashion described
above, with values of u given by

u=0,25, 10, 15,20 . ©)

Light curves for the six cases are shown together in Figure 2
and individually in Figure 3. The parameters and results for
the six cases are given in Table 1, where m,, is the equilibrium
value of the density exponent, given by

3
4 A=-n)’

Sk is the skewness, Ac is the acuteness (see below), o is the

(©)
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standard deviation of the 10th order Fourier fit, Fourier m, is
the mean luminosity as derived in the Fourier fit, amplitude is
the actual measured amplitude of the fit, and the remaining
quantities are the Fourier parameters, defined in Paper 1. All
phases are given on a scale of 0-2x.

Variation of the interior luminosity is shown in Figure 4 for
the case uS. The amplitude of the interior luminosity variation
scales with u, but the phasing is nearly constant. Note the 90°
phase lag of the luminosity after the interior luminosity.

Figure 4 also illustrates the definition of the two parameters
chosen to describe the shape of the light curve. The parameter
discussed in Paper I is the skewness: the ratio of the phase
duration of the “descending branch” to that of the “rising
branch” (shown in Fig. 4). The other parameter, defined simi-
larly, is the “acuteness”: the ratio of the phase duration of
lower than average light to that of greater than average light.
Note that the mean used here is the average of maximum and
minimum brightness. If ¢, is the phase duration of the rising
branch and ¢, is the phase duration of brighter than average
light (equal to the full width at half-maximum of the curve),
then we have

Sk = skewness = L -1 W)

b

and

Ac = acuteness = L —1. 8)
¢fw

A plot of Sk and Ac versus u is shown in Figure 5. We see
that for this sequence of models Ac varies smoothly from less
than unity to greater than 4, while Sk remains in the 2-2.5
range. This behavior is consistent with our aim to look only at
the effects of Ac on the Fourier parameters while holding Sk
fixed. In actual stars, the two quantities are probably highly
correlated.

We now turn to the Fourier parameters. Figures 6 and 7
show the trends in the amplitude ratios (the ratio of the ampli-
tude of the nth harmonic to that of the fundamental) as func-
tion of Ac. Compare with Figures 4 and 5 of Paper 1. We see
that the higher harmonic amplitudes increase with Ac, as with
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FiG. 1.—Typical computed light curve, showing the chosen phase convention; here m, is the Fourier mean amplitude
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FiG. 2—Light curves for the six cases described in the text. The u = 0 case has the lowest amplitude, the u = 20 case has the largest.
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FiG. 3.—Light curves for the six cases, as indicated
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TABLE 1
FOURIER FIT PARAMETERS

Model u0 u2 ub ull ulb u20
u 0.000 2.000 5.000 10.000 15.000 20.000
Density meq 11.820 11.590 11,270 10.830 10.510 10.170
Sk 2.333 2.704 2.571 1.941 2.125 2.448
Ac 0.818 1.273 1.778 2.448 3.167 4,263
Sigma 0.001 0.001 0.001 0.003 0.004 0.012
Fourier m 0.991 0.935 0.874 0.829 0.861 0.973
Amplitude 0.703 0.724 0.841 1.241 1.886 3.039
H1 0.309 0.320 0.377 0.522 0.725 1,017
R21 0.335 0.356 0.358 0.386 0.463 0.564
R31 0.117 0.135 0.149 0.176 0.237 0.337
R41 0.044 0.054 0.066 0.088 0.127 0.205
R51 0,017 0.022 0,029 0.045 0.069 0.123
R61 0.006 0.007 0.011 0.022 0.037 0.073
R71 0.001 0.001 0.003 0.009 0.018 0.041
R81 0.001 0.002 0.002 0.004 0.007 0.020
R91 0.002 0.002 0.003 0.003 0.002 0.009
R101 0.002 0.002 0.003 0.004 0.003 0.005
PHI1 1.501 1.663 1.848 1.946 2.059 2.135
PHI2 4,732 4,595 4,557 4,550 4,704 4,773
PHI3 1.852 1.503 1.233 0.993 1.130 1.175
PHI4 5.336 4.779 4,279 3.764 3.847 3.862
PHI5 2.538 1,747 1.024 0.245 0.267 0.253
PHI6 5.832 4,872 3.935 2.957 2.950 2.908
PHI7 2.021 0.953 0.102 5.519 5.600 5.556
PHI8 3.688 2.437 1.542 1.348 1.878 1.910
PHI9 0.199 5.110 3.909 3.075 4,139 4,436
PHI1O0 3.041 1.521 0.124 4,942 3.977 2.247
PHI21 1.729 1.270 0.862 0.658 0.586 0.504
PHI31 3.631 2.798 1.973 1.438 1.237 1.054
PHI41 5.615 4,412 3.171 2.264 1.896 1.607
PHI51 1.315 6.000 4,351 3.082 2.540 2.146
PHI61 3.108 1.179 5.415 3.849 3.165 2.666
PHI71 4,079 1.880 6.017 4.465 3.756 3.180
PHIS8L 4,245 1.702 5.609 4,631 4,259 3.683
PHI91 5.539 2.713 6.128 4,412 4,462 4,074
PHI101 0.596 3,743 0.496 4,333 2.241 6.033

RISING
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F1G. 4—Variation of the interior luminosity (dashed line) and the exterior luminosity of model u = S. Also shown are the two phase ranges used to define the

skewness and the acuteness (see text).
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FI1G. 5—Variation of the skewness (Sk) and the acuteness (Ac) as functions of the parameter u
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FiG. 7.—Variation of the high-order relative Fourier amplitudes vs. Ac
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FOURIER COEFFICIENTS OF VARIABLE STARS. II.

Sk, but do not go to zero at unity as in the velocity curves of
Paper I, or increase as rapidly, at least for the first few harmo-
nics. The conclusion is that the amplitudes of harmonics 2-5
are determined primarily by Sk, while those of harmonics 6-9
are influenced both by Sk and Ac. Amplitudes of RR Lyraes in
o Cen are given by Petersen (1984) and are in agreement with
the model amplitudes shown here, for skewness = 2-3.

For the low u models, the values obtained for ¢, in Table 1
are near n/2, and those of ¢, are near 37/2, both in agreement
with the values obtained for the velocity curves in Paper I. In
Paper 1, a clear, predictable pattern was found for the higher
harmonics: the ¢, values relaxed to a constant value at a
harmonic level determined by the skewness. This pattern is not
present in the current models. If anything, the ¢y, values seem
to settle down to a pattern that could be a nearly constant
value, a slow increase, or a set of grouped values. This is caused
by the complicated shape of the light curves and occurs at
lower harmonics for higher Ac values.

IV. COMPARISON WITH OBSERVATIONS

In Paper I we noted that the Fourier phases of the adiabatic
models show only abrupt jumps as a function of Sk. Observa-
tions of both Cepheids and RR Lyrae stars, however, show a
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smooth and distinctive variation of the phases as a function of
period or skewness. We hypothesize that the observed varia-
tion is caused by changes in Ac. Plots of the phase differences
versus Ac for the models are shown in Figures 8 and 9. A rather
strong and smooth variation is seen for all harmonics. For
comparison, Figure 10 shows a portion of Figure 8b of Paper
I: Petersen’s data for w Cen (1984), where the mean lines have
been drawn in by eye, and the scale is the same as Figure 9. The
agreement between Figure 10 and Figure 9 in the range
Ac = 1-2.5 is almost exact. Although Ac measures for Peter-
sen’s stars are not available, the prediction based on the
present analysis is, for w Cen:

for average stars in the range:

Sk=1-6;
we predict:
Ac=1-25. ©
Such a variation of Ac, if verified, would totally account for the
phase variations observed.
Another sensitive diagnostic of the Fourier phases is the

“phase-phase” plot, discussed by Simon and Moffett (1985)
and shown as Figures 12 and 13 of Paper I. These figures are
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FiG. 8.—Variation of the low-order relative Fourier phases vs. Ac
T I I T
g '\'\
z 2r %1 =
)] .
-] - \.
STV TN -
a _ \.\
a T _\\\\?31 \\\ —
g \\\\ '\,\.‘ ........... -
< L %21 T~ =
o w/2 ————— ™
m l I 1 :
1.0 2.0 3.0 4.0
Ac

F1G. 9.—Variation of the high-order relative Fourier phases vs. Ac
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FIG. 10.—Variation of the low-order relative Fourier phases vs. Sk for observed RR Lyrae stars: Petersen (1984) data for @ Cen

reproduced here as Figure 11, showing the ¢,,/¢5, plane, and
Figure 12, showing the ¢5,/¢,; plane. The models of Paper I
are indicated by the open circles, and the generalization to a
constant phase shift is indicated by the dashed line labeled
“adiabatic.” The Cepheids analyzed by Simon and Moffett
(1985) are plotted as filled triangles and the w Cen data of
Petersen (1984) is represented by the shaded mean lines. The
present models are plotted as a solid line. We see that the
models represent the RR Lyrae data very well and also follow

the Cepheid data much better than the adiabatic trend line.
Two features in the Cepheid data are not reflected in the
models: the lack of ¢,, values in the range 0 — /2 and the
apparent parallel sequence of stars with ¢,, displaced down-
ward by ~m/2. These features are quite likely associated with
the resonance expected at a period of ~ 10 days.

We conclude that these models represent the Fourier param-
eters of actual stars remarkably well, especially those of RR
Lyrae stars.

27 T A
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0 n/2 T 3n/2 2m

$21

FiG. 11.—Phase-phase plot showing the locus of models and observed stars on the ¢,,/¢,, plane. Solid line: present models; dashed line: adiabatic models;
shaded line: RR Lyrae stars in o Cen (median line); filled triangles: Cepheids; open circle: models of Paper L.
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F1G. 12—Same as Fig. 11 but for the ¢5,/¢,, plane

V. INTERPRETATION

We have identified two primary characteristics of light and
velocity curves that affect the Fourier parameters: the skew-
ness, Sk, and the acuteness, Ac. For the first few harmonics, the
Fourier amplitudes depend primarily on Sk, while the phases
depend on Ac.

Looking at the model, we find that Sk and Ac are deter-
mined by very different physics. Sk is a measure of the mecha-
nical nonlinearity of the envelope pulsation. For the simple
models, the skewness depends only on the amplitude of the
velocity curve, with a very weak dependence on the thickness
of the pulsating shell.

Ac, on the other hand is primarily a light-curve parameter
and its determined by the thermal properties of the star. In the
model it is a function of the amplitude of the light variation at
the base of the driving regions of the envelope of the star. This
variation is caused by temperature variation in the relatively
deep, nearly adiabatic regions below the ionization zones that
contribute the bulk of the radiative damping of the pulsation.
Ac measures the ratio of the light to the radius variation in
these deep layers. By equation (13) of Paper I, we have

u=m[s+4)I;,—1)—n]l—4, (10)

where the values of m, s, n, and I'; refer to the interior, not the
shell. Here m has the value 3 or a bit larger, n and s are the
density and temperature exponents of the opacity and have the
values 1 and 0-3, and I'; is 5/3. We can thus make a table of u
as a function of s (see Table 2). Consulting Figure 5, we see that
this range of u (1 — 9) implies a range of Ac of 1 »2.2. From
equation (6), we see that this is exactly the range of u obtained
from comparison with the @ Cen observations. The implica-

TABLE 2
ESTIMATED VALUES OF u AS A FUNCTION OF s

s u(m=23) u(m = 3.5)
[N 1 1.83
| 3 4.17
2 5 6.50
K 7 8.83

tion here is that at differing effective temperatures in the insta-
bility strip, the effective value of s changes over its maximum
range, probably reflecting the changing depth of the ionization
regions.

One caveat is in order here. It is known that details of the
light-curve shape can be influenced by shock-wave develop-
ment in the vicinity of the hydrogen zone (Castor 1968). We
expect that such processes will modify the results obtained
here, especially for large-amplitude pulsators. The detailed
agreement of the present results with observation is strong
evidence, however, that a very simple model suffices to explain
the bulk of the observational data.

Another point is the lack in these models of the abnormali-
ties in Fourier phases seen in Cepheids with periods near 10
days (Simon and Lee 1981). This is consistent with the explana-
tion of the Cepheid behavior as a resonance phenomenon,
since no resonance is possible in a one-zone model.

The authors would like to thank J. O. Petersen for the use of
his @ Cen data, and, along with N. R. Simon, for valuable
discussions. This research is supported by National Science
Foundation grant AST84-11029, through Mission Research
Corporation.
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