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ABSTRACT

Since the early days of observational astronomy, the technique of Fourier decomposition of the light curves
of variable stars (harmonic analysis) has been used to quantify the light curve shape. Usually, the most reason-
able approach when dealing with observations is a least-squares fit to the data, which yields a set of Fourier
phases and amplitudes whose number is determined by the quality of the data set, generally 5-15 parameters.
An interesting question is whether these parameters can be related to physical characteristics of the star, such
as mass, gravity, composition, etc. Here we compute the Fourier parameters of velocity curves of adiabatic
one-zone pulsation models in an effort to identify the expected properties of this simple case. Two parameters
are varied: the thickness of the pulsating layer (determined by the structure of the star), and the amplitude of
the pulsation. We find Fourier amplitudes that are primarily functions of the skewness of the velocity curves
and vary in a fashion consistent with the behavior of observed stars. The phases, however, tend to vary dis-
continuously as the parameters are varied, an effect seen only rarely in the observations. It is shown that the
pattern of phases for different harmonics is more important than the actual values, and that these patterns can
be found in observations of RR Lyrae stars and Cepheids. This model cannot, however, reproduce the large

phase shifts seen in observed stars of differing periods.
Subject headings: numerical methods — stars: Cepheids — stars: pulsation — stars: RR Lyrae —

stars: variables

I. INTRODUCTION

The light curve of a variable star is its most easily obtained
observational characteristic. It is now well known that the
general shape of the curve as well as the phasing and promi-
nence of definite features change in a regular way as param-
eters such as period, luminosity, and variable type vary. The
characterization of the RR Lyrae types a, b, and c (Bailey 1902)
and the “bump” progression in Cepheids (Hertzsprung 1926)
represent phenomena in this class.

Unfortunately, the “light curve shape” is a qualitative
notion and needs to be described in quantitative terms to
enable reliable classification and analysis. Derivation of
Fourier coefficients is one approach applied to Cepheids by
Kukarkin and Parenago (1937), and for a variety of types of
stars by Payne-Gaposchkin (1947, hereafter PG47). In these
analyses we find “a striking run with period, both of the rela-
tive amplitudes of Fourier components, and of the phase rela-
tions between components” (PG47). This supports the idea
that a classification scheme based on such an analysis could be
useful.

Fourier fitting to construct smooth fits to data is, of course, a
widely used technique (see, e.g., Schaltenbrand and Tamman
1971). The order (highest harmonic) of a useful fit is determined
by the largest gap in the phase coverage of the light curve. For
most stars and data sets, an order 5 fit works well, yielding a set
of 11 Fourier coefficients, including the mean magnitude.

Interest in this technique has recently been reawakened by
Simon and Lee (1981), who analyzed classical Cepheid light
curves and attributed a break in the Fourier coefficients found
at a period of 10 days to a resonance phenomenon responsible
for the Hertzsprung sequence of light curve “bumps.” Sub-
sequent papers by Simon and Teays (1982), Simon and Davis
(1983), Simon and Moffet (1985, hereafter SM85) and Simon
(1985) have enlarged the scope of this study to include field RR
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Lyrae stars and comparison with calculated models. In general
it is found that, in agreement with the earlier work, the Fourier
amplitudes and phases are reasonably well defined and can be
used to distinguish between different types of stars. Recent
theoretical work by Klapp, Goupil, and Buchler (1985), and
Buchler and Kovacs (1985) suggests that multimode reson-
ances play a major role in determining the light curve struc-
ture.

A valuable recent addition to the data base has been provid-
ed by Petersen (1984), who reanalyzed the mean light curves
given by Martin (1983) of the variables in the globular cluster
o Cen (also analyzed by PG47) and showed that well-defined
values and trends in the Fourier parameters were present
through the seventh harmonic for this data set. These RR
Lyrae stars show variation in their Fourier phases similar to,
but not as strong as, those found in the Cepheid studies.

It is clear that the observed changes in the shape of the light
curve are directly related to structural and dynamic properties
of the star. Petersen (1985) outlines a program whereby a
detailed comparison of Fourier analyses of hydrodynamic
models with those of observed stars could yield information
about the structure and evolutionary status of the stars and
perhaps resolve several outstanding problems with our under-
standing of these objects (e.g., the cause of the bump progres-
sion, the stellar masses, the cause of mixed-mode stars, and the
mechanism of mode selection; see Madore 1985 for discussions
of current problems in this field). Unfortunately, our under-
standing of the nature of the Fourier parameters is far from
adequate to allow such a program at the present time. The
comparisons with models that have been made work well for
some of the low-order coefficients but fail for others (Simon
1985). It is not known what values of the Fourier parameters to
expect, or what it means to be “close” to an observed case:
small changes in the light-curve shape can cause large changes
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in the Fourier coefficients, particularly in the higher orders.
Finally, it is not known how many Fourier terms are needed to
obtain useful results. It is clear from the analysis of PG47 that
in most cases all the Fourier amplitudes and phases are highly
correlated and may all be determined by only one or two
properties of the pulsating star.

In this paper we present the results of a study intended to lay
some groundwork to begin to answer these questions. We
present the results of Fourier analyses of the variation of a very
simple model: the adiabatic pulsations of a single homoge-
neous layer of a sphere with fixed lower boundary. In this
nonlinear problem there are only two adjustable parameters:
the thickness of the layer (varies from the entire sphere to an
infinitesimally thin layer at the surface), and the initial ampli-
tude of the oscillation, both directly related to actual stars. We
study the changes in the fitting coefficients as these parameters
are varied and attempt to relate the results to the analyses of
actual stars. In this way we can hope to isolate the effects of
stellar structure and amplitude. Effects seen in the stars, but
not in this model, must be caused by more complicated pheno-
mena, such as multimode processes.

II. METHOD

a) Fourier Analysis

The technique used for the Fourier analysis is identical to
that described by Petersen (1984): least-squares fitting of a
given number of Fourier terms to a general data set. The data
to be fitted are given by (x;, t;), j = 1, M. The fitting function is
written

m(t) = my + i [a, sin (kwt) + b, cos (kwt)] , (1)
k=1

where m, is the mean of the data, N is the order of the fit,and @
is 2m/period. The least-squares normal equations are given by
the derivatives of

M
S(my, ay, b,) = Z [m(tj) - xj]2 > 2
ji=1
They form a linear system in the unknowns m,, a,, and b,
(assuming that the period of pulsation is known) and are easily
solved on a microcomputer.
The results are then converted to the form

N
m(t) =my + Y. [H, cos (kwt + ¢y)] , 3)
k=1
and the quantities
Rk = Hk/Hl (4)
and
¢k1 = ¢’k - k¢1 (5)

are computed. These are the dimensionless amplitude ratio of
the harmonics, and the phase difference between harmonics
and the fundamental. Note that equation (3) defines each phase
on its own scale, so the phase of the kth harmonic runs from 0
to 2nk in one period. Equation (5) gives the phase difference, on
this scale, of the peak of the fundamental mode and the kth
harmonic peak just preceding it. Each of these phase differ-
ences lie in the range 0— 2x. To convert to actual phase (eq.
[6]), divide equation (5) by k.
Once the fit is obtained, we find the “ pulsation phase”

f = fractional part of (¢/period) 6)

of the maximum and minimum values of the fit (f,,.y, fimin) and
define

amplitude = m(fmax) - m(fmin) (7)
and

skewness = (1 — fr.x + frnin)/(fmax — fmin) - ®)

This definition applies to the orientation given below. The
skewness is defined as the ratio of the phase length of the
“descending branch” to that of the “rising branch” and is
generally greater than unity for observed stars.

The routine used for this analysis was tested on @ Cen data
from Petersen (1984). Then two additional tests were run on
the smooth data derived from the model described below: (1)
the least-squares fit on a smooth curve defined by over 200
data points was compared to Fourier coefficients computed
directly from the integral formulae—the results agreed exactly;
and (2) fits of order 1-10 were run on the same data—
coefficients of the lower order fits agreed exactly with those
found for higher orders.

b) One-Zone Model

The pulsation model considered here is a simple version of
the model derived by Stellingwerf (1972), based on the one-
zone model of Baker (1966). Consider a spherical homoge-
neous adiabatic shell of outer radius r and inner radius r,. Its
inner surface is fixed, while its outer surface is free to move but
has an equilibrium position, ry. Defining X = r/r,, we write

L _xn, ©
Po
I
£=<£) =X, (10)
P, Po
T
—=Xx"m- 11
T, (11
where
3
= 12
" 2
Jln P
= 13
Ly <6lnp)s’ )

for the density, pressure, and temperature in the shell as func-
tions of the surface displacement, assuming perfect gas. We
define

g=ml’'y —2=9 (14)
and take as the unit of time the free-fall time:
T =t/tg , 15)
GM -1/2
leg = <_3) (16)
To

With these definitions, the momentum equation for the shell
can be written:

ex_ 1 1

dt? X1 XxX*¥’

where zero external pressure is assumed.
We adopt a standard case with I’y = 5/3 and take “m” as a

(17)
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constant to be specified. Interpretation of the cases in terms of
shell thickness is given by equation (12). Once m is chosen, q is
given by equation (14), and equation (17) is fully specified. An
integration run consists of choosing the starting value of X,
X ,; setting the velocity X equal to zero; and proceeding with a
fourth-order Runge-Kutta integration for several periods.
With proper choice of time step, the integration reproduces
exactly each period—as expected for an adiabatic oscillation.
The linear period for this model is easily shown to be

period, = 2n/(mI"; — 4)'/2 . (18)

At finite amplitude, nonlinear effects cause appreciable
lengthening of the period. This effect is much stronger in this
simple case than in actual stars, because several sources of
nonlinear effects have been omitted (primarily the choice of
constant m and the assumption of homogeneity in the shell),
thus forcing the use of higher amplitudes to achieve a similar
nonlinear effect. We emphasize that the periods found here are
not to be compared with stellar periods, for in stars the period
is determined primarily by the free-fall time, and this effect is
normalized out of the present equation.

III. SURVEY

A set of 25 models was computed at five values of m: 3, 5, 10,
20, and 100, and at five values of the initial radius X,: 1.01,
1.10, 1.25, 1.50, and 2.00. Normally two periods were run of
each case, with the integration step chosen to give about 100
steps per period. The resulting velocity curve shapes are shown
in Figure 1, normalized to constant period and amplitude. Two
additional cases were run to represent the extremes: the case
m=3, X, = 10001, and the case of a pure “sawtooth”
variation—linear decrease and abrupt increase at phase 0.5.
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Order 10 Fourier fits were computed for all these cases, with
the orientation and phase chosen exactly as shown in Figure 1.
The effects of changing these choices are discussed below.
Although these results will apply strictly only to the velocity
variation, in actual stars the light curve and the velocity curve
are generally very similar in shape, and the Fourier parameters
are highly correlated (Buchler and Kovacs 1985).

A complete tabulation of the results of these calculations are
given in Table 1. “Sigma” is the standard deviation of the fit
with respect to the data. Excellent fits were obtained in all
cases, with the exception of a few extreme cases in the lower
right-hand corner of Figure 1: the most extreme case is shown
as a dashed line in Figure 1. Interpretation of these data is
given in the next two sections.

IV. TRENDS IN AMPLITUDES

Here we address the systematics of the Fourier amplitudes.
In order to detect effects other than those induced by a change
in the overall amplitude of the curves, the relative amplitudes
R, (eq. [4]) are usually studied, rather than the raw H, values.

Simon and Lee (1981) show plots of R,; and R, versus
period and versus amplitude for Cepheids. The period plot
shows complicated behavior, with a dip in these quantities
near a period of 10 days. The amplitude plots are much less
well defined but do show a rough correlation of R and the
Cepheid amplitudes. Examination of Table 1 indicates that the
R do vary smoothly with amplitude for each value of m, but
this variation is different in the different sequences. Figures 2
and 3 show the variation of R,, through R, versus amplitude
for all models. Only a very rough correlation can be discerned,
similar to the Cepheid case. There is, however, another param-
eter that does correlate much better, the skewness of the curve.

TABLE 1
FouURIER FIT PARAMETERS

skewness

sigma

H

R

R

R

R

R

R

o M period amplitude 1 21 31 41 51 61 71
1 1L.000l 3 6.280640 1.97%4 1.025E+40 1.0306-6 O.917E-5  5.39%-3 2.971E-3 1.990E-3 1.43%-3 1.050E-3 7.828E-4
2 1.01 3 6.350640 1.960E-2 1.015E40 7.39%-6 0.79%-3  1.030E-2 1.3056-4 1.732E-4 1.346E-4 1.109-8 9.446E-5
3 1010 3 6.480640 1.800E-1 1.300640 4.538E-4 8.0256-2  9.330E-2 B8.031E-3 1.953E-3 6.375E-4 6.298E-4  5.228E-4
4 125 3 6.790E40 3.960E-1 1.698E+0 3.067E-3 1.902E-1  2.055E-1 4.172E-2 1.295E-2 7.301E-4 2,19%6-3 L.172%E-3
5 1,50 3 7.600640 6.606E-1 2.392E40 3.761E-3 2.9756-1  3.271E-1 1.164E-1 4.66%-2 1.688E-2 8.126E-3 2.193-3
6 200 3 O.B00EH0 O.878E-1 A4.157E40 7.514E-3 3.883E-1  A.67TE-1 2.422E-1 1.361E-1 7.6026-2 4.557E-2  2.573-2
7 1.01 5 3.00640 4.08%-2 1.047E40 1.757E-5 2.041E-2  1.476E-2 5.256E-4 1.893E-4 1.520E-4 1.253E-4  1.069E-4
8 1.10 5 3120640 3.586E-1 1.437E+0 1.8176-4 1.763-1  1.38%E-1 1.955-2 3,221E-3 3.434E-4 1.896E-4  B8.345E-5
9 125 5 3.440640 7.437E-1 2.071E40 1.756E-3 3.864E-1  2.721E-1 B8.378E-2 2.568E-2 8.997E-3 2.407E-3  1.266E-3
10 1050 5 4.250640 1.153E40 3.2894+0 4.973-3 A4.77%-1  4.2086-1 1.941E-1 9.591E-2 4.684E-2 2.45%-2 1,186E-2
1l 200 5 6.280640 1.622E40 6.049E+0 O.281E-3 5.363-1  5.508-1 3.402E-1 2.217€-1 1.47%-1 1.008-1 6.910E-2
12 1.01 10 1.770E40 6.894E-2 1.034E+40 1.070E-4 3.888E-2  2.671E-2 1.798E-3  6,266E-4 5.110E-4 4.162E-4  3.500E-4
13 110 10 1.920640 5.472E-1 1.78%+40 1.0486-3 2.616E-1  2.213-1 5.580E-2 1.361E-2 4.130E-3 6.277E-4  5.580E-4
14 1025 10 2.400640 1.018E40 3.210E40 3.39%-3 4.307E-1  4.012E-1 1.791E-1 8.534E-2 4.020E-2 2.0246-2 9.34%E-3
15 1050 10 3.3606+40 1.458E40 5.099+0 O.125E-3 5.151E-1  5.16%-1 3.102E-1 1.9856-1 1.271E-1 8.30%-2 5.594E-2
16 2.00 10 5.580E40 1.990E40 9.333+0 4.017E-2 5.28%-1  5.957E-1 A.121E-1 3.0456-1 2.3316-1 1.824E-1 1.447E-1
17 1,01 20 1.160640 1.021E-1 1.148540 8.401E-4 5.116E-2  4.491E-2 7.243(-3 2,731E-3 2.171E-3 1.646E-3 1.268E-3
18 1.10 20 1.420640 6.905E-1 2.550E40 7.048E-3 3.006E-1  3.322E-1 1.331E-1 5.0886-2 2.315E-2 7.63%E-3  4.728E-3
19 1.25 20 2.080640 1.157640 5.79%+0 0.033-3 4.331E-1  4.860E-1 2.845E-1 1.738E-1 1.119-1 7.10%-2 4.729E-2
20 1.50 20 3.080640 1.653+0 B.625640 3.467E-2 4.016E-1  5.478E-1 3.675E-1 2.606E-1 1.969E-1 1.487E-1 1.170E-1
21 200 20 5.14%+0 2.053+0 O9.300E40 7.807E-2 5.017E-1  5.930E-1 4.244E-1 3.168E-1 2.610E-1 2.088E-1 1.791E-1
22 1.01 100 5.2806-1 1.9956-1 1.749E+0 8.786E-4 0.604E-2  2.070E-1 5.197E-2 1.117E-2 4.1176-3 1,2146-4 8.992E-4
23 1.10 100 1.0806+40 B.686E-1 7.999+0 1.153-2 2.894-1  5.026E-1 3.1956-1 2.284E-1 1,641E-1 1.238E-1 9.427E-2
24 1.25 100 1.800640 1.520E40 1.000E+41 7.037E-2 3.894E-1  5.470E-1 3.814E-1 2.950E-1 2.419E-1 2,098E-1 1.898E-1
25 1050 100 2.8806+40 2.107E+0 1.209%+1 1.510E-1 4.588E-1  5.745E-1 4.100E-1 3.292E-1 2.81%E-1 2.524E-1 2.343E-1
%6 2.00 100 5.10040 2.267E40 1.177E41 2.187E-1 4.80%-1  6,030E-1 4.338E-1 3.477E-1 2.949E-1 2,558E-1 2.374E-1
27 sawtooth  1.000640 1.070E+0 8.999E+0 1.438E-1 3.18%E-1  4,995E-1 3.324E-1 2.487E-1 1,984E-1 1.647E-1  1.405E-1
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sawtooth

5.662E-4

8.22% -5
4,549E-4
1.195€-3
1,891E-3
1.631E-2

9.327e-5
8,502E-5
3.442E-5
6.756E-3
4.810E-2

3.004E-4
1.880E-4
5.107E-3
3.691E-2
1.160E-1

9.700E-4
7.116E-4
3.009%-2
9.038E-2
1.521E-1

5.587E-4
7.291E-2
1.697E-1
2,214E-1
2,155E-1

1.223E-1

3.896E-4

7.296E-5
4.007E-4
1.010E-3
9.408E-5
8.931E-3

8,278E-5
7.264E-5
3.623c-4
2,938E-3
3.338E-2

2,616E-4
2,438E-4
2.07%-3
2.535E-2
9.366E-2

7.264E-4
1.317e-3
2.051E-2
7.2480E-2
1,286E-1

5.447E-4
5.627E-2
1,529E-1
2.145E-1
2.057E-1

1.081E-1

2.417e-4

6.554E-5
3,574E-4
9.142€-4
7.523E-4
6.151E-3

7.448E-5
6.496E-5
1.953E-4
2,03%-3
2,355E-2

2.303E-4
1,9426-4
1.432€-3
1.668E-2
7.602E-2

5.2106-4
2,74%-4
1.284E-2
5.635E-2
1.163E-1

4,683E-4
4,397E-2
1.409E-1
2,084E-1
1.97%€-1

9.672E-2

1,543E40

1,572+«
1.584E+0
1.612E40
1.598E+0
1.601E+0

1.568E+0
1,573E+0
1.558E40
1.590E+0
1.576E+0

1.562E40
1.560E+0
1.585E40
1.552E40
1.555E+0

1,527E+0
1,521E40
1.542E+0
1.512E40
1.426E+0

1.547E40
1.556E+0
1.579E+0
1.549E+0
1.503E+0

1.570E+0

1.437E40

4,717E40
4,73%+0
4,796E+0
4,768E+0
4,775E+0

4,706E+0«
4,717E+0
4,688E+0
4,751E40
4,723E40

4,694E+0«
4,692E+0
4,743E+0
4,674E+0
4,678E+0

4,628 +0«
4,613E+0
4,655E+0
4,594E+0
4,423E40

4,665E+0
4,684E+0
4,727E40
4,671E+0
4 ,575E+0

4,712E40

1.351E40

4,782€40
1.618E+0«
1.690E+0
1.654E40
1.663E+0

1.595E+0
1.57%+0
1.534E40
1,628E+40
1.587E+0

1.557E+0
1,540E+0
1,616E+0
1.514E40
1.520640

1.423E40
1.422640
1,486E+0
1.394E+0
1.126E40

1.503E+0
1.5286+0
1.588E+0
1.506E+0
1.365E40

1.570E+0

1.26%+0

4,768E+0
4,741E40
4,895E+0
4,825E+0
4,838E40

1.650E+0
4.7226+0
4,662E+0
4,790E+0
4.734E40

1.570E+0
4,670E+0
4.774E+0
4,636E+0
4.645E+0

1,353E40
4,513E+0
4.599%E+0
4,476E+0
4,123E40

4,608E+0
4,656E+0
4,732+0
4,634E40
4,437E+0

4712640

1.188E40

4,784E+0
4,702E+0
1.476E+0«
1.70%+0
1.724E40

1.670E+0
1.589E+0«
1.513E+0
1.666E+0
1.597E+0

1.569%+0
1,525E+0
1.645E40
1.477E+0
1.487E+0

1.302E+40
1,324E40
1.430€E+0
1.276E+0
8,434E-1

1.482E+0«
1.,49%E40
1.603E+0
1.467E+0
1.236E+0

1.570E+0

1.108E+0

4,79%+0
4,715E+0
5.060E+0
4.834E+0
4,902E+0

1.691E+0
4.719E+0
4,627E+0
4,830E+0
4,745E+0

1.569%+0
4.618E+0«
4,806E+0
4,59%+0
4,612E+0

1.247E40
4,409E+0
4,541E+0
4,358E+0
3.813E40

2.676E+0«
4,6286+0
4,736E+0
4,59%+0
4.311E40

4712640

1.02%E+0

4,814E40
471340
5.187E+0
1,755E+0«
1.783EH)

1.712E40
4,709E+0
1.508E+0
1,701E+0
1.608E+0

1.56%+0
1,537E+0
1.670E+0
1.439%E+0
1.454E+0

1.193E+0
1.231E40
1,375E40
1.15%+0
5.645E-1

1,534E40
1,472E40
1.587E+0
1.431E+0
1.096E+0

1.570E+0

9.519E-1

4,829%+0
4.713E+0
5.223E+0
4,951E40
4.970E+0

1,734E+0
4,713E+0
3,647E+0«
4,875E+0
4,756E+0

1.569E+0
1.600E+0
4,846E+0
4,560E+0
4,578E+0

1.13%+0
4,265E+0«
4,483E+0
4,240E+0
3.509E+0

1,586E+0
4,602E+0
4,729E+0
4,564E+0
4,199E+0

4,712E40
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sawtooth

8.760E-1

4,844E+0
4,713E+0
5.296E+0
5.251E+0

1.834E4H0<

1.754E40
4,712E+0
1.53%+0
1,725E+0
1.619E+0

1.56%+0
1.563E+0
1.677E40
1.402E+0
1,420E+0

1.085E+0
1.149E40
1,321E+0
1,042E+0
2,735E-1

1,565E+0
1,444E+0
1.690E+0
1.396E+0
9.628E-1

1.570E+0

8,043E-1

4,859E+0
4,713E+0
5.358E+0
5.029E+0
5,047E+0

1.775E40
4,712E+0
1.592E+0
4,934E+0
4,767E+0

1.569E+0
1,573+0
4,909E+0
4,522E+0
4,545E40

1.031E+0
1.180E40
4,423E40
4,122E40
3.225E+0

1.571E40
4,575E+0
4,827E+0
4,528E+0
4,075E+0

4,7126+0

4,633E+0

1.571E40
1.570E+0
1.572£40
1.5706+0
1.571E+0

1.56%+0
1.570E+0
1.570640
1.571E+0
1,570E40

3.004E+0
G.342E-2

3.147E+0 <«<A4,686E+0>

3.137E40
3.141E+0
3.141E40

<3.173E+0>

3.141E+0
3.141E40
3.141E+0
3.141E40

1,56%E+0 <<3.153E+0>

1.570E+0
1.571E+0
1.5706+0
1.568E+0

1,573E40
1.570E+0
1.570E+0
1.568E+0
1.569E+0

1.569E+0
1.570E+0
1,567E+0
1.572E40
1.568E+0

1.570E+0

3.141E+0
3.141E+0
3.141E+0
3.13%E+0

<3, 124E+0>
3.141EH0
3.141E40
3,13%+0
3.129E+0

3.143E40
3.140E+0
3.131E40
3.140E+0
3.13%E+0

3.141E40

1.378E+40
4.760E+0

4,730E40
4,713E40
4,714+

1.660E+0
4,711E+0
4,711EH0
4,713E+0
4.712E40

1,603E+0
4,710E+0
4,713E+0
4,711E+0
4.708E+0

1,527E+0
4,711E40
4,711E40
4,70%+0
4,69%+0

4,701E+0
4,711E40
4,695E+0
4,719E40
4,706E+0

4,712E+0

6.036E+0

4,413E+0

2.791E+0

3.203E+0
3.062E+0
5.982E+0
6.281E+0
6.281E+0

1.111E-1
5.276E-3
3.068E-3
6.282E+0
6.283E+0

4,035E-2
5.078E-3
6.281E+0
4,580E-5
6.278E+0

6.232E40
1.633-3
3.636E-4
6.2806+40
6.275E40

1.645E+0
1,491E+0

8,76%-2
6.187E+0

1.670E+40><1.857E-1

1.574E40
1.575E40

4.847E+0

«1,561E+0>

1.558E40
1,573E+0
1.570E40

4,761E+0
1.536E+0
1.574E40
1.570E+0
1.565E+0

4,650E+0
1.565E+0
1.568E+0
1,566E+0
1.535E+40

2.764E-2><5,957E40

6.281E+0
6.269E+0
3,120E-3
2.499E-3

1.570E+0
1.53%+0
1.585E+0
1.573E40

3.12%+0
3.136E40

3.300E+0
6.261E+0

1.170E+0

4,813E40
4.603E+0
4.893E+0
4,726E+0
4,722E+0

1.752E40
4,691E+0

3,163E+0>><3,744E+0

3.137E40
3.141E4H0

3.19%E+0
<3,179E+0>
3.135E40
3,141E4+0
3.135E40

3.069E+0
3,14%+0
3.142E40
3.137e40
3.142E40

3.267E+0
3.140E+0
3.093E+0
3.151E+0
3.13%E40

1.041E-7

1.570E+0

3.141EH)

4,721E+0
4,.712640

1.636E+0
1.680E+0
4,725E+0
4,711E+40
4.705E+0

1.488E+0
4,661E+0
4,708E+0
4,706E+0
4,660E+0

1.772E40
4.713E+0
4,656E+0
4,734E40
4.739E+0

4,712E40

5.833E+0

3.255E+0
3.018E+0
3.354E40
3,427E+0
6.268E+0

2.051E-1
3.116E+0
7.739%E-2
6.264E+0
6.282E+0

7.446E-2
8.344E-2
6.253E+0
1.039E-3
6.275E+0

6.190E+0
«2.430E-2»>
3.817E-3
6.278E+0
6.280E+0

2,033E-1
6.281E+0
3.661E-2
1.721E-2
6.281E+0

8,072E-7

4,218E+0

1.697E+0
1.433E+0
1,804E+0
1.606E+0
1.596E+0

4,940E+0
1,543E40
4,855E+0
1,59%+0
1.571E40

4,795E+0
4,815E+0
1.615E+0
1.568E+0
1.562E+0

4,609E+0
4.817E+0
1,562E40
1.563E+0
1,522E40

4,945E+0
1.573E40
1,593E+0
1.599%E+0
1.608E+0

1.570E+0
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F1G. 2.—Relative Fourier amplitudes for harmonics 2-5 vs. total amplitude for the models in Table 1

Figures 4 and 5 show the same data plotted against skewness,
and we see that very nice correlations are obtained.

This suggests that a direct comparison should be possible
with the type ab RR Lyrae observations analyzed in detail by
Petersen (1984), since for this group of stars skewness decreases
linearly with increasing period and covers a range in skewness
of 2-7, a range over which considerable variation is seen in the
R calculated here. In fact, comparison of Petersen’s Figures 4
and 5 with our Figures 4 and 5 shows remarkable agreement,
both in the size. of the R coefficients and in the shape of the
variation as well: negative second derivative for R,,, R5,, and
R, ; positive second derivative for R, and R,,. Also, in both
data sets Rs, shows a nearly linear increase with increasing
skewness. In all cases Petersen’s R correlates better with skew-
ness than with period, as in the one-zone results.

We conclude that only a very simple model is needed to

understand the variations of the observed Fourier amplitudes
and that the magnitude of each harmonic’s amplitude relative
to the fundamental is primarly a function of the skewness of
the curve.

V. TRENDS IN PHASES

a) Specification of the Phase

We turn now to the trends in phases seen in the models.
Recall that when comparing phases of different investigations,
allowance must be made for type of analysis (sine or cosine),
orientation of the curves (“light” or “velocity ” orientation),
and zero point of the phases (time origin). These considerations
affect both the phases and the phase differences as defined by
Simon and Lee (1981). We choose the “light curve” orienta-
tion here even though we are analyzing velocity curves, since
this is the way the magnitude data are always displayed:
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F1G. 3.—Relative Fourier amplitudes for harmonics 6-10 vs. total amplitude for the models in Table 1
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FiG. 4—Relative Fourier amplitudes for harmonics 2-5 vs. skewness for the models in Table 1

“rising” branch is of shorter duration. The phase is chosen
such that the midpoint of the rising branch is at phase 0.5. This
preserves the symmetry of the curve to the fullest extent and
avoids extraneous phase shifts caused by increasing skewness.
The benefits of this choice will become apparent in the data
analysis. See § VIIa for a discusssion of the corrections
required to compare data sets.

b) Results

Even a very quick examination of Table 1 suffices to show
that these models simply do not show any gradual changes in
the phases of the harmonics as a function of any parameter.
With only a few exceptions, the phases ¢, are all one of two
values: n/2 or 37/2. The ¢, represent unity minus the phase of
the peak of the harmonic, so these values produce curves that

cross the median point at phases 0 and 1 and thus preserve the
nodes at these two limits. As we have seen, with smooth data,
the least-squares fit is equivalent to a Fourier integral analysis,
and the phase of each harmonic is independent of the others.
Thus, in order to preserve the node, only these two phases are
allowed. This requirement is relaxed for nonsymmetric light
curves but probably applies to actual velocity curves. Of
course, scatter in the observed points can also result in shifts in
phases.

The pattern of these phases is readily apparent. For each
model, the symbol “ « ” appears among the ¢,: to the left of
this symbol the phases alternate between the two values; to the
right the phase is constant. The very low amplitude model (No.
1) shows nearly constant phases for all the harmonics, while
the “sawtooth” model (No. 27) shows alternating phases
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FiG. 5—Relative Fourier amplitudes for harmonics 5-10 vs. skewness for ths models in Table 1
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throughout the first 10 harmonics. The other models generally
switch at some intermediate point, which depends primarily on
their skewness. Figure 6 shows the value of the “switch” har-
monic as a function of skewness: for curves above a skewness
value of ~ 3.5 they show the “sawtooth ” behavior through the
tenth harmonic.

The pattern found in the relative phases (¢,,) is somewhat
different. Model No. 1 (nearly sinusoidal) shows a regular pro-
gression of phases in steps of 7/2, increasing toward the lower
harmonics. On the other hand, the sawtooth case (No. 27) also
shows an identical progression, but now increasing toward
higher harmonics, as indicated by arrows in Table 1. The other
cases show a combination of both directions, with the switch
occurring at a relative peak in phase, indicated by “ « > ” or
“ > « ”in the table.

Comparing these two representations for the phases, we see
that the switch points are comparable, although they are cer-
tainly much easier to spot in the raw ¢, than in the ¢, data. In
either case, several phases are needed to spot the pattern. The
major difference between the two types of phases is that the
relative phases sacrifice the lowest (and best determined) data
point: the phase of the fundamental. It would certainly be an
advantage to retain this data point in observational studies in
which only a few harmonics are well determined. The extra
effort required to achieve this is simply deciding on a standard
zero point for the phases.

Reading down the phase columns from top to bottom gives
some idea of the effect of varying the skewness: usually we find
a sudden jump of magnitude = in a given ¢, or ¢,,. The jump
occurs at very low values of the skewness for the lower harmo-
nics, and higher values for the higher terms, as indicated by
Figure 6.

¢) Comparison with Observations: w Centauri

In general, sets of actual stars do not show the type of
constant-phase behavior seen here. Although this could be due
in part to the effects of statistical scatter in the observed points
and irregular choice of phase origin, trends are seen in the data
that persist in the relative phases and undoubtedly represent

STELLINGWERF AND DONOHOE
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some real effect in the stars. Simon and Lee (1981) suggest that
these trends in Cepheids are caused by resonant interaction
between different modes, a result strongly supported by the
analytical analysis of Buchler and Kovacs (1985). If this
hypothesis is correct, then such trends should not appear in the
present models—only a single mode is permitted.

In this discussion we ignore the effects of color of observa-
tions, type of reduction process, etc., and concentrate on the
corrections due to phase shifts and orientation of the curves as
analyzed.

First, consider the observations of PG47. These calculations
used intensity rather than magnitudes, and this gives the same
orientation of the light curves as the present analysis (rising
branch of shorter duration). The zero of phase is chosen to
occur at maximum light. This choice introduces a deviation
from the phases used above that is different in each case and
cannot be corrected easily. Therefore, only the phase difference
can be compared. Finally, the fit used in PG47 is a sum of sine
terms rather than cosine terms. To correct for this, we apply a
correction of —7/2 to all the PG47 phases and then compute
the phase differences (this will change the phase differences by
[k — 1]m/2). The result of applying this procedure to the RR
Lyrae type ab stars (Martin 1983, data) is shown in Figure 7,
where phase differences have been plotted versus period, and
the lines are regression lines for each phase difference. The
trends are reasonably well defined, with some scatter for the
higher harmonics. The RR Lyrae type c data are too few to see
any trends in this data set.

These results should match those of Petersen (1984), who
also analyzed the Martin (1938) mean curves of RR Lyraes in w
Cen. Petersen gives only phase differences, and data are given
for only the lowest periods of type c a variables. In this case the
magnitude data have been used in the analysis, so the curves
need to be flipped to correspond to the convention used here.
This is done by adding a correction of © to all the phases,
implying a correction of (k — 1)z to the phase difference ¢,;.
This means that every even-numbered phase differences (¢,,,
@41, etc) will be shifted by =, while the odd-numbered differ-
ences are unchanged. This is an important consideration, since
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FIG. 6.—The harmonic number at which a switch from constant to alternating phases is expected. See text for details.
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F1G. 7—Phase differences for RR Lyrae type ab stars in w Cen vs. period, as given by PG47. Regression lines are shown.

this is exactly the transformation that converts the
“sinusoidal” phase progression found in the model data
(descending phases) into the “sawtooth” progression
(ascending phases). The transformed data, taken from Peter-
sen’s figures and data, are plotted as rough loci of the phase
differences versus period in Figure 8a. Approximate values of
the skewness are shown at the top of the figure. Figure 8b
shows the complete data set of phase difference data, plotted
now versus skewness. It is clear that, despite considerable
scatter in the higher harmonics, smooth progressions, valid for
both fundamental and first-overtone pulsators, emerge (the
dashed lines are eye fits to the data). The conclusion is that a
single easily determined parameter, the skewness of the light
curve, seems to accurately predict all the phase difference data
for these stars. Note the point at skewness 2.43 midway
between the other ab and c cases in Figure 8b. This is variable
104, period of 0.868, with ¢,, and ¢5, exactly as predicted by
the progression toward the ¢ variables.

An important corollary to this result is that an overtone
pulsator at an unusually high amplitude looks exactly like an
ordinary fundamental pulsator, and vice versa, in the phase
differences.

The phases in Figure 8 show the same progression as found
in the PG47 data, and the values agree quite well. We expect
the more sophisticated and more extensive analysis of Petersen
to yield more accurate values than those of PG47.

As seen in Figure 8, the phase differences undergo progress-
ive shifts in value as the period, or skewness, varies. These
shifts are not found in the simple model. We knote, however,
that the progression of phases found in the short-period type ¢
variables and the long-period type b variables (both with skew-
ness near 2), both match exactly the progression found in the
“sawtooth ” case in Table 1. This is the expected result, since,
according to Figure 6, all phases through ¢¢, should show the
sawtooth behavior for skewness greater than 2, and all phases
through ¢,, show this behavior for skewness greater than 1.3.
This effect probably contributes to the scatter in the higher
phases of Petersen’s data, but the switch to sinusoidal behavior

is not expected in the data as given and should be more appar-
ent in the phases than in the phase differences.

It may be significant that the simple model prediction is seen
at the two edges of the instability strip, and that the maximum
deviation is found at the center of the strip. At the edges of the
strip the pulsation is approximately a pure mode, while near
the center the stars may be affected in some way by the proxim-
ity of the mode transition line: some influence of the other
mode may, in fact, be emerging near the center of the strip.

Omega Cen is an interesting case in this respect, since in
spite of vigorous searches by a number of workers (all unpub-
lished at this time), not a single case of a mixed-mode RR
Lyrae star has been found in this cluster. Harmonic analysis of
clusters that do contain mixed-mode RR Lyrae stars, such as
M3 or M15, would be of great interest, to see if any differences
can be found.

It is interesting that although the values of the phases
change, the nature of the progression (increasing phases with
intervals of 7/2 with increasing harmonics) tends to remain the
same (the only exception is the short-period type a stars, where
mode 3, 4, and 5 phases are crowded). This suggests that the
only change is a shift in the fundamental phase relative to the
other modes. It is imperative to examine the phases themselves
in order to clarify this issue.

d) Comparison with Observations: Cepheids

The case of Cepheid light curves presents a somewhat differ-
ent theoretical situation. All Cepheids are believed to be pulsa-
ting in the fundamental mode, so mode switching is not a
consideration, except perhaps at the very shortest periods.
Instead, a resonance at which the second overtone period is
just twice the fundamental period is encountered at period
roughly equal to 10 days (Simon and Schmidt 1976). This res-
onance is expected to affect the Fourier phases and thereby
cause the progression in light curve shapes discussed by
Hertzsprung (1926). Recently, SM85 have analyzed the data of
Moffett and Barnes (1980, 1984), and these are the data dis-
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cussed here. In all cases, we choose the V magnitude data set as
an example.

Although SM85 do not provide any data, some information
can be obtained from their plots, but this limits the discussion
to consideration of ¢,,. Figures 9, 10, and 11 are taken from
Figures 1, 4, and 14 of SM85. The values of the phase differ-
ences have been adjusted exactly as in the Petersen data above,
and all phases have been constrained to lie between 0 and 2x.
The light lines show one possible interpretation of the data and
are discussed below.

The scale of skewness in these figures is shown at the top: the
stars with periods near 10 days show a early symmetrical light
curve (although not sinusoidal), and the shorter as well as the
longer periods show larger skewness. At low as well as high
periods, a considerable scatter in amplitude is found, while at
7-10 days the amplitudes are more homogeneous (Fernie and
Chan 1985). It is thus rather surprising that at exactly 8-10 day
periods the maximum range in relative phases is found. It is
impossible to tell in the ¢,, plot whether the variation near 10
days is in the shape of a “cusp,” as described by Simon, or a
smooth change of a little over 2x in phase, as drawn in Figure
9. In the case of ¢3,, Figure 10, however, it is clear that a
smooth change is present, as is in the case of ¢,,, Figure 11. In
the large skewness limit of long periods, the values attained are
very well defined: ¢,, = n/2, ¢5, = =, and ¢, = 37n/2. These
are exactly the values found in Table 1 for the “sawtooth”
model, and in the RR Lyrae stars at both the longest and

SKEWNESS
HIGH ¢— LOW —»
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shortest periods. Indeed, the clump of Cepheids at period of
~5 days also show this progression, but the shortest period
Cepheids deviate toward lower values (perhaps due to an
incipient mode change to the overtone expected near a period
of 2 days).

The ¢4, plot shown as Figure 11 shows much the same
trend as ¢5,, with the exception that there appears to be a
disjoint sequence of points at periods 6-8 days (broken line).
This additional sequence is parallel to and displaced by /2
from the main trend line, with a possible small group of stars
near ¢,, = n/2 with a possible deviation of n from the main
trend. This type of sudden jump in phase is just the type of
behavior seen in the simple model. In fact, a jump in ¢4, of 7 is
expected for stars with small skewness, as is the case near
periods of 10 days. The shape of the 10 day Cepheids is not
sinusoidal, however, and this may account for the /2 shift
observed. In any case it would be of great interest to identify
the light-curve characteristics, if any, that distinguish this small
discrepant group of variables.

Returning to ¢,,, Figure 9, we see the reason why the line
has been drawn as shown. First, although the phase shifts seen
here are larger than those of the RR Lyraes, the progression in
phase is identical for the successive harmonics, so similar
trends should be present in all the relative phases. Second, in
the vicinity of 10 day periods, it is possible that a few stars may
have skewness very close to unity and thus deviate by = from
the main sequence, as seen in ¢, and in model No. 1, Table 1.
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2m T T

3m/2

®21

/2

1 1

30 40 50
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F1G. 9.—Phase difference ¢, vs. period as given by Simon and Moffett (1985). The line is a possible interpretation of the trend.
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FiG. 12.—Phase-phase plot based on the data in Figs. 9 ana 10. (Triangles denote stars with periods greater than 10 days.)
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FiG. 13.—Phase-phase plot based on the data in Figs. 10 and 11. (Triangles denote stars with periods greater than 10 days.)
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These stars could account for the points at ¢,; = m/2 near 10
days that seem to fill the gap between the two branches of the
solid line.

As in the RR Lyrae case, the simple model fails to account
for the drastic phase shifts seen in the SM85 plots. This is
consistent with the resonance as driving these effects. We note
that the behavior of the relative phases of Cepheids in the
period range 3-10 days as a function of skewness is identical to
that found for the RR Lyrae stars in w Cen, as seen in Figure 8
(that is, varying from about ¢,, = 0 at large skewness to 37/2
for small skewness, and similar trends in the other phases). This
is remarkable, since the resonance that presumably drives the
variation in the Cepheids is lacking in the RR Lyrae stars. At
longer periods, however, the variation of the phases in the
Cepheids differs from that of the RR Lyrae stars, apparently
increasing as the skewness increases, if the general trend is
estimated correctly. This needs to be checked in the data.

SM8S5 also show several “phase-phase” plots, two of which
we now reproduce here as Figures 12 and 13. Both plots have
been converted to the convention used above (add n to the
even phase differences) and plotted on a scale of 0 to 2. Figure
12 shows ¢, versus ¢,,; triangles denote stars with periods
greater than 10 days, as in SM85. The line is the correlation
obtained for a /2 shift between these quantities. Most stars
conform to this trend, the major exception being the stars with
periods just greater than 10 days, whose ¢,; is seen to be
somewhat high, as noted above.

Figure 13 shows ¢,, versus ¢3,; (the third combination is
also plotted by SM8S5 but contains too much scatter to detect
trends). In this plot the stippled line indicates the “simple”
trend of 7/2 shift and broken lines are shifted by /2 and = from
this line and show what seem to be the subsidiary sequences
noted in Figure 11.

VI. BUMP TESTS

Whitney (1956) pointed out that the Cepheids in the period
range of 7-10 days that show bumps could be represented
reasonably well by a smooth light curve from which one cycle
of a small-amplitude sine wave has been subtracted. Christy
(1968) suggested that such a “bump ™ could be caused by an
ingoing wave generated in the outer layers of a pulsating star
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that reflects from the stellar core and subsequently arrives at
the surface. He showed that the dynamics of nonlinear pulsa-
tion models is consistent with this hypothesis and that the
timing of such a reflected wave could account for the Hertzs-
prung progression seen in Cepheids.

Perhaps the effect of such a bump arriving at the surface at
different phases could produce the type of phase shifts seen in
variables. To test this idea a series of “bump” models were
constructed. The bump itself was chosen to be one cycle of a
sine wave with period 1/3 the fundamental period, amplitude
1/10 the total amplitude, and ten phases from 0 to 0.9. These
choices were found to reproduce the Hertzsprung sequence
reasonably well when applied to model 14: m = 10, X, = 1.25.
The resulting models were analyzed, and the type of result is
illustrated in Figures 14 and 15. These are “phase-phase ” plots
similar to Figures 12 and 13, but for the ten “bump” models
with varying bump phase. We see that the result is an essen-
tially random variation of the relative phases over a rather
small range. The third harmonic did not track the small bump
even though the periods matched. It appears that the simple
reflected bump idea cannot explain the large phase changes
observed. Of course, the actual effect of the reflected wave
when it appears at the stellar surface is much more complicated
than merely subtracting a simple sine wave at varying phases.
A more reasonable test would employ a hydrodynamic model
in which an outgoing wave is artificially generated deep in the
interior.

VII. DISCUSSION

a) Methodology

The following procedure has been found to work well with
both analytical and observational data sets:

1. Transform the data to a standard orientation. The
orientation used here is obtained by analyzing the negative
of observational magnitudes and velocities. It would be
useful to display at least one curve in the orientation chosen
to avoid ambiguity.

2. Compute a least-squares Fourier fit of the data.

3. Compute the mean curve given by the fit and determine
the phase of the point at which the “rising” branch crosses
the mean magnitude. Define this point as phase 0.5.

1.4 1.5

1.6 1.7 1.8

F1G. 14—Phase-phase plot produced by adding a “ bump  (see text) to model No. 14 at varying phases
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Fi1G. 15—As in Fig. 14, for different phases

4. With analytical data, the Fourier phases can be trans-
formed to the corrected phase origin, as described in § V.
With observational data it is advisable to redo the Fourier
fit with the new phases. Comparison with the transformed
phases then gives a consistency check.

With this procedure, comparison of the Fourier phases
between data sets is possible, and the most significant data
point, ¢, is retained. As seen in the model data and in PG47,
trends in the phases are much cleaner than those in the phase
differences.

b) Results

We have found that trends in the Fourier amplitudes of
Cepheids and RR Lyrae stars can be reproduced by a simple
one-zone model are primarily functions of the skewness of the
curves, rather than amplitude. A major unsolved question is
why stars at identical periods and amplitudes have a variety of
light curve shapes.

We have seen that the Fourier phases of the model velocity
curves are always one of two values (n/2 or 3w/2), as deter-
mined by the nodes of the curves, and that the pattern of the
phases in successive harmonics can be related to the skewness
of the curve. Observed light curves also show this pattern but
also show large shifts as a function of period of all the phases.
It would be valuable to compare the model results to observed
velocity curves rather than light curves, but the results are
expected to be similar.

The observed phase shifts cannot be reproduced by simply
adding a “bump” to the curves at varying phases. By their
nature, we suggest that the observed shifts fall into two cate-
gories:

1. The very rapid variation of the phase differences in
9-11 day Cepheids of ~2=n. This is probably a resonance
effect.

2. The more gradual variation seen in 2-8 day Cepheids
and in all RR Lyrae stars. These stars are far from any

low-order resonance, so this effect may be due to an entirely
different cause, such as an incipient mode switch. Of course,
the possibility of other resonances in higher overtones
should also be considered.

¢) Exhortation

These results support the contention that Fourier param-
eters could be useful descriptors of variable star data. It is clear
that their usefulness depends on building a large and reliable
data base of light- and velocity-curve analyses. This can be
done as large projects, such as those undertaken by Simon and
Petersen, but equally valuable would be publication of the
Fourier parameters obtained by routine fitting of observa-
tional data.

Fits should be taken to as high an order as possible. This is
easily determined by computing fits to several different orders
and picking the best one. Beyond some point, the fit will begin
to be influenced by random fluctuations and gaps in the data.
Analytic estimates of the accuracy of the fit parameters
(Petersen 1984) are useful but could fail to detect wild fluctua-
tion in a phase gap.

Studies are most useful if the data are published. Many of
the trends seen in currently available data are not understood,
and future studies will need complete data to allow progress. It
is much better to publish the raw phases and amplitudes.
Sophisticated functions of these can then be easily recon-
structed, and allowance for new transformations must be
made. If available, the amplitude and skewness of the curves
should be given, as well as derived characteristics of the star.

The author wishes to thank Dr. N. Simon for a thorough
review of the manuscript, and Dr. J. O. Petersen for providing
a complete file of his w Cen analyses. This project has been
supported by NSF grant AST84-11029 through Mission
Research Corporation.
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