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1. Introduction

A new version of Phase Dispersion Minimization (PDM) is now available. This version is coded in C and can be used as part of a program interpreter that uses a script to set up customized analyses. This note describes the features of this package.

2. S_tran Implementation

For Windows installations, the PDM package is embedded as a command in the “S_tran” scripting language. This allows custom analysis packages to be easily constructed, with as much complexity as needed for a given application. Multiple steps and multiple problems can be set up with just a few commands. Alternatively, complex data analysis scenarios can be programmed and executed without a compile.

To use this implementation, the S_tran commands to read and analyze the data are placed in a text file, usually with a “.s” extension. Associate this extension with the file s_tran.exe on windows machines. The data is also in a text file, usually with a “.csv” extension, and the values are separated by commas. The script file contains commands to read the data (for comma-separated data) that would look something like:


N = 103                              // set to number of data points

read_lab    data.csv           // use only if there is a line with data labels
for_i = 1 N

  read_dat Xdat[i] Ydat[i]

end_i
If the file is data only (no labels), and/or the number of data lines is variable, the following construction can be used:


set_delim    comma|space|tab|slash                  //  default is   comma

N = big_number     //  for safety

for_i = 1 N

  read_line   data.csv   Xdat[i]  Ydat[i]  Sdat[i]        // sdat = sigma is optional
  break_if   eof                                       // end of file will be detected
end_i
N = i-1                                                     // number of records read
The number of data points can be set by checking for an end-of-file on the data read. Also, other data formats can be accommodated by resetting the delimiter, reading moer fields, etc. See the S_Tran User Guide for a complete discussion.

The PDM package is called with the command:

pdm2

// updated PDM analysis

This command does the classic “PDM” analysis by default, but updates and options are available. The analysis is controlled with the commands:
pdm_quiet *

(suppress screen output)
pdm_lpoints  #


(points/frequency line)
pdm_f_range  fmin  fmax
(frequency range)
pdm_seg_dev  dev
(dev = 2 default, 500 for single segment)
pdm_auto_bins  |  pdm_wide bins   |   pdm_narrow_bins

pdm_bin_pts  #

(set the switch pt from wide to narrow bins)
pdm_invert *           (flip the curve data)
pdm_no_sig *
(ignore any “sigma” data in the input)
The following options are discussed below:

pdm_beta_range bmin bmax [nbeta]
(do a scan for period changes)

pdm_beta_scale  #
(scale factor for beta)

pdm_subharm *
(subharmonic averaging)

pdm_linear_fit *
(variance about a fitting line)

pdm_spline_fit 
(variance about a smooth fit)
pdm_monte_carlo [trials] (do a Monte-Carlo significance test)
Where lpoint is the number of points across a spectral line, fmin and fmax are the frequency limits, and segdev controls the segmentation.  The commands with an asterisk may be followed by “false” to turn off the option for multiple pdm2 scripts.
The results are written to data files. Here is a summary:

data.csv 

–  X, Y, sig
pdmplot.csv
-  Frequency, Theta

pdmcurve.csv
-  Phase, Value, Mean Curve Value, sigma, Pt number

residuals.csv
-  X, Residual

sig.csv

-  Theta, Beta, Beta w/ correction

theta_dist.csv
-  Theta, Theta_dist, Theta_min dist

Several variables will be defined, and can be used in the script:

Trange  - range of time
F_min[1-3]  -  three most significant frequencies
Th_min[1-3] -  theta values at these frequencies

Signf[1-3] – significances of the three frequencies
3. UNIX C - Function Implementation
The function pdm2() and its supporting functions are available as a C package for UNIX applications. The function call is defined as:

int pdm2( int ne, double datx[], double daty[], double sig[] )
where ne is the number of data points, datx[] are the time values, daty[] are the data values, and sig[] is the standard error of each point (can be zero if not known). The function returns 1 if successful and 0 if an error is encountered.
 In this case the flags, parameters, and arrays referred to in this document will be replaced by their corresponding C constants, variables, and functions. These are defined in a series of comments at the top of the file, and are listed here for reference.

/*----these globals are provided for optional external control of the process----*/

/*----run params - can be set externally----*/

/*    if zero, default values will be used  */

int invert_curve = 0;                      /*  plot negative of curve                 */

int lpoints = 10;                          /*  number of points to cover line         */

double minf0, maxf0;                       /*  freq scan range                        */

double segdev = 2;                         /*  sensitivity for segments (big->1 seg)  */

double beta_min = 0., beta_max = 0.;       /*  period change mode                     */

double beta_scale = 1./365.25e6;           /*  scale factor for beta                  */
double phase_shift = 0.;                   /*  shift phase of pdmcurve plot           */
int nb0 = 21;                              /*  points in beta scan                    */

int do_beta_scan = FALSE;                  /*  set to true for beta scan              */

int do_subharm = FALSE;                    /*  subharmonic averaging                  */

int do_dist = 1;                           /*  write theta distribution files         */

int bin_10 = 2;                            /*  0=5/2 bins,1=10/1,2=auto,>2=sw_#/auto  */

int do_linear_fit = FALSE;                 /*  linear curve fitting                   */

int do_spline_fit = FALSE;                 /*  Bspline curve fitting                  */

int pdm_verbose = 1;                       /*  generate screen output                 */

int pdm_debug = 0;                         /*  turn on local debugging                */

int do_non_par = FALSE;                    /*  select nonparametric sig test          */

int nb1 = 250;                             /*  points in Monte Carlo analysis         */

int do_sigmas = TRUE;                      /*  use sigmas in computation              */
/*---results - can be used externally----*/

double trange;                                    /* range of time                    */

double fthmin[4], thmin[4], signf[4];             /* freq,theta,signif at 3 minima    */

double bin_mean[MAXBINS+1], bin_var[MAXBINS+1];   /* bin data, mean curve             */

int nbin[MAXBINS+1], nf;                          /* points per bin / scan            */ 

int theta_dist[THMAX+1], tot_points;              /* numerical theta distribution     */

double dtheta[THMAX+1];                           /* theta values for dist            */

double theta_dist2[THMAX+1];                      /* theta_min distribution           */

int tot_points2;                                  /* npoints for theta_min distr      */

double f_min, f_max, theta2[MAXDATP+1];           /* final theta scan result          */

int ran_array[MAXDATP+1];                         /* for Nemec significance test      */

double ratio;                                     /*  1/(S/N ratio) from sigmas       */
4. UNIX Data File Version

The current version of the Unix package has the capability to run as a stand-alone program with parsing functions built in to read ASCII data files. See the comments in the routine, and the function “read_data_file()”, located at the end of the psd2.c file for the details of the data setup. The number of “title lines” that precede the data must be specified (default=1, value = 0-N). Then the data consists of either two columns of X/Y points or three columns of X/Y/sigma values. Delimiters between the values can be either commas or blanks. The data read routine will determine the total number of points. An example data set is provided: TuCas.dat.
The procedures that are used for the period analysis are contained in the coding of the main() function. The default setup will do a wide-range frequency scan, then do a fine-scan analysis of the best frequency candidate. Theis section of the code can (and should!) be modified to suite the particulars of your data set.

As of July, 2012 an alternative version of PDM2 is available for rich data sets – PDM2b (updates by Lucas Macri). In this case 100 bins are used to cover a period instead of the usual 10 bins. This version can be used if the total data set consists of greater than 1000 points and the phase coverage is very good. This version also has the capability of specifying an identifier for the current data set. For example…(bracketed numbers are optional)
. % pdm2b 34997   [period]  or  [min_period] [max period]

will expect to find an input data file called 34997.bin ("binned", but this could be changed to .csv or .dat to avoid confusion) 

it will generate output files called 

34997_<output>.dat 

where <output> is one of [sig, data, theta_dist, residuals, pdmplot, pdmcurve, beta]
5. Rich Data File Version
A special version of pdm2 is now available that is designed for “rich data”, i.e. data sets with more than 1000 points and very good phase coverage such as satellite or polar continuous observation data. This version uses 100 data bins to cover the period, rather than the standard 10. This version is available as an application in s_tran.exe and as a stand alone package in the file pdm2b.c (see next section).
To run the 100 bin version in S-Tran, use the command:

pdm2b [invert]

Some additional commands are available in this version – they are listed in the S Applications Guide. Also some additional parameters are included in the header information, they are listed below (see code for latest updates):
char prefix[11] = "100";                   /* run prefix                              */
int n0 = 1, n1;                            /* index range                             */
int nplot;                                        /* number of points in plot file    */
double ymin, ymax, yamp, xmean;                   /*  mean curve parameters           */
Finally, the additional user variables are defined for script use:

Ymax -  maximum of curve fit
Ymin – minimum of curve fit
Ymean – mean value of curve fit (data average)
Yamp – amplitude of curve fit

Tstart – starting time of segment

Tend – ending time of segment
Tmean – mean time value of current data 

Tmean2 – mean time value of all segments processed
Period – period from current analysis
Nplot – number of points in the largest segment as plotted

6. Rich Data File Version – UNIX Version

The source for the rich file version of PDM2 is available in a separate download from the web page. Currently, this file is:

pdm2b_[ver#].c
Examination of the comments in the code will clarify the operation of this version. Several command line usages are available:

      pdm2f


 pdm2f root


 pdm2f root Per


 pdm2f root Per1 Per2


 pdm2f root Nrange Nstep


 pdm2f root Per Nrange Nstep


 pdm2f root Per1 Per2 Nrange Nstep

Here the “root” value is a string that will be prepended to all output files to distinguish separate runs. Per is a trial period, Per1 and Per2 specify a range of periods to cover. The Nrange and Nseg inputs turn on the Blazhko analysis, and will be discussed in the next section.
7. Blazhko / Time Variable Amplitudes and Period
The “Blazhko Effect” is found in many variable stars, causing their amplitude and period to vary in a non-predictable manner. If the main frequency found in a standard PDM analysis shows large scatter, this is probably the reason. Other data sets showing variations include transits in multiple star systems, rapidly evolving stars, etc. This section describes a variation of the normal PDM analysis that can detect arbitrary variations in the amplitudes and period across the data set. 

The idea is to subdivide the data into many sections and analyze each section separately. Usually, this is only possible if lots of data points are available, so this option is currently available only in the rich data version of the UNIX source code provided. Later, we will provide a script to duplicate this approach using the sdat pdm2 analyses.
This analysis is a built-in option in the pdm2b version of the UNIX coding. The parameters controlling the analysis are:

int Blazhko = FALSE;                       /* Blazhko flag                            */

int Nstep = 250;                           /* step length (points) for Blazhko        */

int Nrange = 1000;                         /* segment length for Blazhko              */

Setting Blazhko = TRUE turns on this feature. The other two parameters control how the sub-segments are chosen. Nrange is the number of points in each segment, Nstep is the number of points advanced from segment to segment. For example, If N = 10,000, Nrange = 1000, Nstep = 1000, then ten non-overlapping segments would be chosen. Nrange should be chosen to include at least 5-10 periods of variation, while Nstep can be varied to achieve other criteria. Setting Nstep = 500 would produce 20 analyses of 1000 points each. Nstep = 2000 would produce 5 subsets with gaps between them.  The optimum value of each depends on the nature of the variation. Several cases should be tried.
The actual number of points in a given segment may vary from Nrange if a substantial gap is present in the data, and segdev is chosen to pick up the major part only. The actual number of points used is output to the summary file.
Each sub-segment of the data set is analyzed separately and the mean curve parameters, including the amplitude, max, min, and mean values, the period, and the number of points used, are tabulated in a special output file Blaz_sum.dat. This file can in turn be subjected to a PDM analysis to determine if the light curve is varying in a periodic manner.
 In S_tran, the Blazhko analysis is done “by hand” as follows (set PDM parameters first). The crucial command here is the call to pdm_data_range, which picks the points to analyze. The summary table is written to B_run_sum.csv (see write_lab line). The command pdm_prefix is used to prepend “B_#” to the usual pdm data files, so that a full set of files for pdmplot and pdmcurve, etc are written for each segment (names will be B_1_pdmcurve, B_1_pdmplot, B_1_residuals, etc.). Here is the full script:
#--Blazhko loop---
Nrange = 1000   // length of segment to compute, in points

Nstep = 500     // number of points to slide
write_lab "B_run_sum.csv" Time Amp Min Max Mean Period N

Nseg = (N-1-Nrange)/Nstep    // number of segments
show_nl

input Nseg      // display Nsseg 
for_i = 1 Nseg

  Nstart = 1+(i-1)*Nstep 

  Nend = min(Nstart+Nrange,N)

  pdm_data_range Nstart Nend

  $pre = B_ + @i

  pdm_prefix @$pre

  show_nl

  show $pre Nstart Nend

  pdm_spline_fit

  pdm2b invert

  write_dat Tmean Yamp Ymin Ymax Ymean Period Nplot

  //if Nplot<0.6*Nrange  write_line B_run_sum.csv  ""   // blanks for gaps

end_i

8. Mean Curve Fit Algorithms

The original PDM technique can be viewed as a least squares fit to the step function defined by the bin means. Although extremely robust for a variety of data sets, for cases with a well-define variation a more accurate method is available. This approach is to fit to the mean curve as defined by linear interpolation between the bin means rather to the means themselves. The command is:
pdm_linear_fit    (pdm_spline_fit   -  for a smoother fit)
Two characteristics of actual data sets that complicate the analysis are noise level and gaps in the data. Gaps will be addressed in the next section. The figure below shows a solution for 200 points of data consisting of a sine wave plus sigma = 1 Gaussian noise, together with the mean curve defined by the bin means. We will show later than the theta value needs to be less than about 0.90 to obtain a good period for this size data set. The value for this analysis is 0.511. The value without curve fitting is 0.58.
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In the file pdmcurve.csv both the data and the mean curve being used are listed for each data point. The phase of this plot can be adjusted with the command


pdm_phase_shift    #

where   #   represents a shift in phase. In the above plot setting # to 0.22 would shift the maximum of the curve to phase 0.

Here is the same data set, but without the noise component. Clearly the residuals relative to the mean curve will be very small, and, in fact, the minimum theta found is 0.02. The value using PDM without curve fitting is 0.13. The frequency and period shown on the X axis label are those obtained by the PDM2 analysis.
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The new procedure has the obvious advantage of reducing the minimum value of theta, and thus improving the chance of finding a period, without changing the underlying statistical nature of the technique. There are two areas that need consideration, however. 

1)  For frequencies in the scan that do not represent a clear signal, no meaningful mean curve can be defined. Thus we apply this method only for theta values low enough to be free of appreciable random effects (below  1 – 11 / N ). 

2)  Since this is a more accurate fitting technique, it also fits the “subharmonic” (1/2 frequency) better than the classical PDM method. To see this effect, consider the sine wave example shown in the 1978 paper: 10 cycles/201 points. The variation of the theta statistic using classical PDM is shown below.
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The actual frequency is 1.0 (large dip), with subharmonics seen at 0.5 and 0.33. Enabling the curve fitting option results in the following theta plot:
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Both the main feature and the subharmonic features are deeper, with very little difference to discriminate between the real frequency and the fist subharmonic. In practice this is not a problem, since detecting the subharmonic is just as good as detecting the main frequency, and the double period is obvious in the folded data plot. It does complicate the theta variation, however, and makes interpretation more difficult. A solution to this problem is “subharmonic averaging”, discussed below.

Before computing residuals, a correction is applied to the bin means to account for smoothing due to the second derivative of the curve. This correction is equivalent to an iterative procedure first used by Stobie (ref?): 1) the mean curve is subtracted from the data, 2) new bin means are computed for these residuals, 3) this new mean curve is again subtracted, and so on, until converged. The reason why the residuals still have non-zero bin means is due to the second derivative of the curve. It turns out that the iteration has an analytic limit, and this is the correction applied here. The correction is not applied during the theta calculation, only for the final mean curve and residuals.

9. Multiple Periods

A question arises as to whether the PDM approach, which is designed to handle a single periodic component, can be used to analyze systems with multiple periods. To check this, the above sine wave test case was rerun with a signal consisting of two equal amplitude sine waves with periods of 1 and 0.75. 

The data set, and the resulting theta plot is shown below. It appears that a linear superposition principle is in effect, and the two frequencies appear nicely as equally strong minima, along with their subharmonics.

The folded data and the mean curve for the 0.75 period is shown in the third plot. The amplitude of the derived mean curve is just slightly less than the correct amplitude of 1.0.
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10. Data Segmentation – Example Analysis – TU Cas

Data Segmentation is a feature of the original PDM package. Used properly it enables a very powerful and efficient algorithm for data sets spanning long periods of time, but including large gaps. The idea is to perform a broad search for periodic signals with the data gaps removed. This broadens the spectral features from a width of 1/T, where T is to total time base to 1/Tj , where Tj is the length of the longest segment. The result is a candidate for the periodic frequency. The second step is to scan the frequencies near the candidate with the gaps included in the calculation to obtain a more accurate period.

The PDM routines search for gaps in the data greater than some specified multiple (segdev) of the average time between data points. To illustrate the procedure, consider the TUCas data set shown below. Here 80 points of data span 15 years of observations.
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The “rough cut” is done with four segments. The initial procedure is:

pdm_lpoints    3

pdm_f_range   0   4

pdm_invert

pdm2

This sets the resolution to 3 frequency points per spectral line (rough), and requests a scan of the frequency range 0 -> 4. The segmentation threshold is not set, and so is left at the default value of  2.  The segments contain 6, 14, 26 ,and 34 points with a maximum time rage of 110 days. The resulting theta variation is shown below.
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This scan includes 1,329 frequency points. Without the segmentation, and using fine resolution, the number of points increases to about 2 million, and the aliases caused by the data gaps would make an initial analysis difficult. The theta minimum is at a frequency of f = 0.4693, and this becomes our trial for a more accurate pass:
pdm_lpoints   100

pdm_f_range   F_min[1]-.01  F_min[1]+.01

pdm_seg_dev    500

pdm_invert

pdm2

Now we request 100 points per line, search over a limited frequency range, and put the segmentation threshold at 500 times the average timestep (this suppresses the segmentation). This “fine scan” is shown below – 10,000 frequency points. The oscillations are aliases caused by the gaps, but there is a well defined best case for this data set at a frequency of  f = 0.46743.
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The mean light curve at this frequency is shown below. The lighter colored points show the mean curve. 
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In this case a substantial noise component is present, caused by a second period. This secondary oscillation can now be analyzed by performing a second analysis on the residuals (written to residuals.csv). The second analysis is coded thus:

read_lab residuals.csv

for_i = 1 N

  read_dat Xdat[i] Ydat[i]

end_i

pdm_lpoint   3

pdm_f_range   0  4

pdm_seg_dev  2

pdm_invert

pdm2

which results in the following analysis
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Using the option   pdm_linear_fit   produces the following result. Significance levels of 0.50 and 0.01 are shown.
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This is the distribution of confidence level for this case derived from a Monte Carlo analysis (see next section). Theta min is below 0.5 for this mode, very significant.
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The minimum is now found at a frequency of  0.65283. A second pass is done as described above to obtain the improved frequency of the second period as 0.65865. The resulting mean curve is shown below, with an amplitude of  0.20 – 0.40 magnitudes. The remaining scatter is caused by interactions with the main period.
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11. Missing Data

Any blank data fields in the input files (should have one or more blank spaces in the field) are flagged as “missing data” and not used in the calculation. They will be written as blank fields in data.csv.

Any data values that need to be excluded from the calculation for any reason may be flagged as missing data by setting those entries to the following special value.  

MISSING = -99999

These points will be skipped in the calculation and will appear in data.csv as blanks. 
Note that this missing data treatment could affect the period search and frequency sampling if many points are excluded, especially at the beginning and end of the data. This could result in a small change in the results, but this deviation should always be below the precision limit of the result.

12. Statistical Analysis

Beta function test
Detailed statistical analysis of the PDM technique has been reported by Schwarzenberg-Czerny (1997, Ap.J. 489, 941). The result is that the distribution of values of the theta statistic can be predicted by an Incomplete Beta Function (see Press, Numerical Recipes) with possible corrections for multiple trials and correlation of residuals. The goal of such an analysis is to approximate the distribution of theta values obtained for a purely random signal. The integral of this distribution is then an estimate of the probability that a result at any given level of theta could be due to noise alone (called the “significance”). 

The function proposed to generate the estimate of the probability distribution is 

i(  (N-M)/2,  (M-1)/2,  (N-M) * theta / (N-1)  )

where N is the total number of data points, M is the number of bins, and “theta” is the value of the PDM theta statistic (SC97, eq. 11). This equation has been implemented in the current version of the code. 

In addition to the analytic function shown above, a correction needs to be applied to account for the number of independent frequencies actually computed during the period search procedure. This “bandwidth correction” is needed because many theta computations are normally undertaken, and any one of these can produce a spurious signal. Following the argument by Press (NRC sect 13.8), the number of independent “trials” is approximately the number of frequency points reduced by the “oversampling” factor (i.e. points per spectral line). For PDM2, this is m = (nf / lpoints). To apply this correction, note that since  gives an estimate that the result is due to noise, then (1 – ) is the probability that the result is real, and for “m” trials this probability will be reduced to (1 – )m . The probability that the result is spurious is thus increased to 2 = 1 - (1 – )m . The original beta distribution and the bandwidth corrected version are written to a data file for examination (sig_dist.csv). A typical summary of the three best candidate frequencies is shown below. The “significance” is the probability that a pure noise signal would produce a Theta value as low or lower than the observed value.
Minima: #    Theta     Frequency    Period  Signif(beta)

        1   0.719779   0.992312    1.00775   0.022892

        2   0.866284   0.505177    1.97950   0.691675

        3   0.895149   1.280984    0.78065   0.899391

Monte-Carlo test
Unfortunately, the bandwidth correction outlined above also depends on the distribution of data, as well as the details of the analysis (such as the linear curve fit option in PDM2). Also, the value given above may not be accurate for small data sets (N<50). To be sure of the confidence level of a detected signal, an alternative approach has been outlined by Nemec & Nemec, 1985, Ap.J. 90, 2317. In this approach the data values and times are used for a given data set, but the data order is randomized to remove the signal component. A normal PDM2 analysis is done for this trial data set using all of the settings desired for the actual analysis. The minimum Theta obtained is an estimate of a “pure noise” result. This analysis is repeated many times to obtain a full distribution of noise generated Theta-mins (the default number of trials is 250). This distribution is then used to estimate the significance of the best candidates. Also, this “extreme value” distribution and the distribution of the Theta values themselves are written to a file for examination (theta_dist.csv). The Theta distribution should agree with the beta function distribution, and the Theta-min distribution corresponds to the beta distribution after a bandwidth correction. The command to generate this analysis is 
pdm_monte_carlo  [#trials]

(default value for trials is 250)

The Monte Carlo values for the same three Theta candidates shown above:

Minima: #    Theta     Frequency    Period  Signif(MC)

        1   0.719779   0.992312    1.00775   0.016000

        2   0.866284   0.505177    1.97950   0.827035

        3   0.895149   1.280984    0.78065   0.987914

As a test case, 51 points of random Gaussian values were generated over a time range of 1 –> 10 and analyzed at frequencies spanning 0->2. Wide (5/2) binning was used, which is the default for data sets with less than 100 points. The top plot is the beta distribution (with bandwidth correction in the left-hand line), and the bottom plot is the Monte-Carlo result using 500 trials with the Theta-min distribution at the left. This is the case for the two sets of summary output shown above. The results are close, but not equal. For most applications the beta test would be adequate.
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Top: confidence level versus Theta using beta distribution. Left: with correction.

Bottom: Same plot using Mote Carlo analysis. Left: Theta_min distribution, Right: Theta.

The same data set was then analyzed with narrow (10/1) bins. For this bin structure the number of points per bin can be small, generating more noise in the Theta plot. The results for beta and 500 Monte-Carlo trials are shown below. The bandwidth correction for the beta case has changed a bit, but the actual distribution found in the Monte Carlo trials has changed much more, and the two approaches no longer agree. This indicates that for cases with small data sets, “clumpy” data in time, or using the new PDM2 techniques to enhance sensitivity, the Monte Carlo analysis should be selected. If the Monte Carlo calculation is too time consuming, reducing the points per line parameter, the frequency range, or the number of trials will help speed the analysis.
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13. Data Quality
If available, the precision of each point can be accounted for in the computation. The estimated standard deviation (standard error) of each point is put into the input array Sdat[]. These are treated in the computation in the following way: the distance of each point from the mean curve is reduced by its Sdat value before the variance of the bins is computed. If the point is closer to the mean than its estimated error, then it does not contribute to the variance of the bin at all. Imagine that each point has an error bar, then the distance from the error bar to the mean or the mean curve is used instead of the full distance. This has the effect of reducing the contribution of the points with large error bars in a straightforward and non-singular way consistent with the statistics of the PDM approach. It has an advantage over the usual scaling on 1/sigma2 in that there is a weaker (linear) dependence on the sigma values, which are often not well known, and the singularity at small sigma is avoided.
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Before computing, several checks are made on the Sdat[] array. First, any negative values are made positive. Second, the variance of the Sdat array is computed and compared to the overall valiance of the complete data set. If the sigma variance is larger, it is scaled to the actual variance. This scaling is removed at the end of the computation.

To illustrate this technique, we generate a data set that is the usual 10 cycle sine wave, but add a noise component of the form   3*(ran2+ran2+ran2). The function “ran2” is a uniform deviate ranging from –1 to 1. This approximates a Gaussian distribution noise component with a large but finite scatter. The dataset is:
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The normal analysis (with seed = 1) produces the following theta plot:
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The signal with frequency 1 is completely lost in the noise. Now we repeat the analysis, but set Sdat[i] = abs(noise component of point i). 
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And the signal is now clearly visible. Compare this with the theta obtained with the usual 1/sig2 weighting. The correct frequency emerges, but the statistic varies wildly.
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14. Multi-Band Data Analysis

Often a data set will consist of several different measurements during the same time period. Photometry in several color bands would be a good example. Since the observation times are different and the noise contributions are uncorrelated, combining these data sets would be of great benefit to any analysis. The problem is that the different bands have differing mean values and variances. The relationship between the measurements usually cannot be determined accurately enough to transform all the bands to a common scale, which would enable direct combination of the data.

The solution is to normalize each set of data to its own mean and variance, then combine the relative dispersions in a common theta statistic. This is similar to the procedure for treating separate data segments, and usually the same computations can be used to combine various measurements. A trial run on the different data sets could also be done, the mean and variance adjusted in the data read statements, and then the data sets could be combined in a subsequent run.
15. Subharmonic Averaging

A typical PDM analysis will show a second signal at ½  the frequency of the main oscillation. This is simply the 2-period periodic signal. Using the new “fit to mean curve” technique, these “subharmonics” are more prevalent because the fitting is more exact, so the larger slopes of the 2-period signal can be resolved in cases where the normal PDM bin mean fit would tend to smooth out the larger sloped signal. Here is a test case showing this type of problem: 77 points are equally spaced over 10 periods of a sine wave signal with no noise. The data are shown below:
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The PDM theta function for this case with “linear fit” is shown below.
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The actual signal is seen at f = 1. Another strong signal is present at a frequency of 0.5. Another equally strong signal at f = 3.35 is the subharmonic of the Nyquist reflection of the main signal, which occurs at f = 6.70 for this case. Smaller peaks are seen at the f/3 values. These “ghost” signals are present in all data sets, even without gaps in the data. With gaps, the problem is further increased with aliases of the periodic gaps appearing. With noise, the subharmonic signals can appear to be more significant than the actual signal. In most cases, plotting the mean curve reveals the double-period, but it would nevertheless be an advantage to reduce this effect.

One way to do this is through “subharmonic averaging”. Using this technique, a test is made at each frequency if a possible significant signal is present (theta below some threshold, currently set to 1 – 11/N). If so, the value of theta reported is replaced by the average of the actual theta, and the theta at ½ the frequency. For real signals, the f/2 value will be slightly higher than the f value, and theta will increase slightly. For false signals, including aliases and noise features, the f/2 value will be close to unity, and the theta value will be increased substantially, reducing the dips for false signals. Applying this technique to the above example produces the following plot.
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As expected, the main feature is raised slightly, but most of the false features are raised considerably more to much less significant values. This makes identification of the primary frequency much easier and results in a much cleaner theta variation for analysis.

16. Period Change Detection

Many stars show a very slow change in period due to evolutionary or other changes in structure. PDM2 has an option to include this effect in the computation. It also facilitates checking a range of values for the period change to see if any match the data. The formula used is:

P = P0  +   t .

Here  is a dimensionless quantity, but is commonly given the dimension of d /Myr, which is a unit of 1/365.25e6.  P0 is the period obtained without the change (assumed to be roughly constant), and the time in this expression is zero at the middle of the current data set. The scan is usually done after obtaining an accurate period, and is usually the last step in an analysis. The command is:
pdm_beta_range   bmin   bmax   [#]

The entire analysis will be repeated with # values of beta ranging from bmin to bmax (# is an optional argument, defaulted to 21). The minimum value of theta for each case will be shown on the screen and written to the file beta_scan.csv. A very small range of frequencies is normally used to conserve run time. A typical run looks like:

query "Ready to do beta scan"

pdm_invert

pdm_f_range F_min[1]-.001 F_min[1]+.001

pdm_lpoints 101

pdm_seg_dev 500

pdm_narrow_bins

pdm_linear_fit

pdm_beta_range -.4 .2 31

pdm2

system "copy pdmcurve.csv cb.csv"

In this case, 31 points are requested, and the data versus phase plot of the last beta point is copied to the file cb.csv. Screen output is shown, and results are shown in the plot below.
    Ready to do beta scan:

PDM: invert data plot

PDM: freq range = 1.92285 -> 1.92485

PDM: points to cover freq line = 101

PDM: set segment dev = 500

PDM: set narrow (10/1) bins

PDM: use linear interp instead of bin means

PDM: beta range = -0.4 - 0.2

Beta     Thetamin    F

 -0.40000  0.11015  1.92385,

 -0.37143  0.10869  1.92385,

 -0.34286  0.10450  1.92385,

 -0.31429  0.10309  1.92385,

 -0.28571  0.10123  1.92385,

 -0.25714  0.10010  1.92385,

 -0.22857  0.09810  1.92385,

 -0.20000  0.09709  1.92385,

 -0.17143  0.09553  1.92385,

 -0.14286  0.09486  1.92385,

 -0.11429  0.09521  1.92385,

 -0.08571  0.09537  1.92385,

 -0.05714  0.09588  1.92385,

 -0.02857  0.09681  1.92385,

 0.00000  0.09701  1.92385,

 0.02857  0.09806  1.92385,

 0.05714  0.10008  1.92385,

 0.08571  0.10085  1.92385,

 0.11429  0.10191  1.92385,

 0.14286  0.10349  1.92385,

 0.17143  0.10499  1.92385,

Scan finished, data in beta_scan.csv

        1 file(s) copied.
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The scale factor used for the beta values can be reset with the command:

pdm_beta_scale   #              (default for # is 1 / 365.25e6)

17. APPENDIX:  TU Cas Data

This is the TU Cas data set supplied with the original distribution of PDM. The last line contains the frequency for the fundamental mode. The second mode is at f = 0.6586.

TU CAS - PDM TEST DECK                                                 

        21                               

 37936.967     8.010 37937.944     7.550 37938.949     8.040 37939.969  7.63

 37940.664     7.910 37940.949     7.900

 38219.851     7.252 38220.829     7.908 38220.895     7.926 38221.781  7.584

 38221.886     7.407 38225.905     8.052 38228.911     7.518 38229.911  7.988

 38231.825     8.011 38232.927     7.574 38233.833     7.846 38234.800  7.689

 38234.900     7.367 38235.902     7.996

 43015.903     8.050 43017.891     8.024 43052.580     7.198 43052.716  7.147

 43052.825     7.292 43052.942     7.457 43057.575     7.694 43057.704  7.787

 43057.833     7.892 43061.558     7.574 43061.654     7.601 43061.755  7.633

 43061.868     7.681 43066.724     7.936 43066.800     7.960 43066.895  7.977

 43073.606     8.076 43073.819     7.707 43092.607     7.973 43092.635  7.981

 43094.736     8.070 43094.758     8.085 43098.625     7.866 43104.679  7.719

 43104.833     7.831 43126.707     8.047 43403.760     7.489 43403.881  7.620

 43403.972     7.705 43404.624     8.021 43404.742     8.044 43405.627  7.539

 43405.701     7.574 43405.763     7.606 43405.831     7.646 43405.888  7.658

 43405.965     7.686 43406.009     7.706 43406.635     7.859 43406.731  7.886

 43406.817     7.903 43406.891     7.937 43406.999     7.962 43407.625  7.744

 43407.721     7.427 43407.771     7.262 43407.872     7.192 43407.951  7.248

 43408.010     7.328 43408.623     7.889 43408.684     7.928 43408.737  7.953

 43408.813     7.980 43411.621     7.882 43411.707     7.836 43411.835  7.754

 43411.910     7.707 43412.011     7.625 43492.652     8.087 43500.598  7.817 

 0.46744                                                                
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