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 Introduction

This document describes the test cases used to validate the hydrocode SPHC. These cases serve two purposes – 1) Code validation to ensure that updates do not change any fundamental code results, and 2) Templates for initial setup of SPHC applications. Normally, the first purpose requires that all the tests run normally and produce correct results whenever anything changes in the code structure or run environment. The second purpose provides a tested, working starting point for any application that includes any special setup commands that may be overlooked in a scratch setup for the case. All the test cases use a very small particle number and make use of other time saving setup options to produce fast running test cases. Also, these test cases do not use mature physics models for material properties, equation of state, etc. They are meant to be used as tests ONLY, not as actual models of any physical system.

These tests are run whenever the code changes in any way, including coding changes, compiler changes or platform change. At present there are 22 tests in the suite. These tests cover many, but not all, of the physics options, materials, geometry options, boundary conditions, and special features. Many of the tests are standard cases with known, possibly analytic, results. Other tests have been compared in detail with experimental results. Several of these tests are difficult cases to compute with a smooth particle code, and require careful choice of parameters, setup conditions, and boundaries. For these cases, the appropriate case in this list can be used as a template for a successful model of a similar application case.

A partial list of some of the fundamental SPH research papers is given in Section 5. All references will be found in this list.

The code name SPHC is derived from “Smooth Particle Hydrodynamics” plus the computer language used = “C++”. It was developed in 1987 at Mission Research Corporation (now a division of ATK), in Albuquerque, NM as part of a program supported by the Defense Nuclear Agency (now part of the Defense Threat Reduction Agency) to model and understand high altitude shock physics. Subsequently, in an expanded version including the stress tensor, solid materials, and high explosives, it was used at Los Alamos National Laboratory and became the template for the LANL SPH code SPHINX. In 2003 it was modified to model aerospace engineering applications for NASA. At present (2020) it is owned and maintained by Stellingwerf Consulting. The code version discussed here is 1264.44 (code version 12.44, 64 bit compile). Setup files are designed to function independently of version number. Running these test cases on an earlier version of the code should work fine, except for a few new commands, which will be ignored. Running on a later version should always work.

The SPHC code is available via license agreement. An open source version of the code is available at www.stellingwerf.com. This version includes all code features, but omits strength of materials and explosive modeling modules. It is fully operational for fluid flow, mixing, and stability problems.																																													                                                
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SPHC runs are usually stored in folders in /home//sdat   (\home\sdat on Windows machines), but can be located elsewhere, as required.

The 22 tests in the current validation list are shown below. These folders are usually stored in the location

 /home/sdat/test_output    	 on a Unix machine, or the equivalent location,

\home\sdat\test_output   	on a Windows machine. 
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Each of these folders will contain an input (setup) file for the run (e.g. blast.inp), one or more plot files (e.g. blast.thor, history.thor), all of the plot files for the test run (e.g. p.00, p.01,…), all of the restart files for the run (e.g. s.00, .s.01, …), and the screen image summary (status_final.txt), which shows the code version, run statistics, with the run time, resource usage, and other information at the endof the run

Variations on this file setup might be a folder named “/Test_Output_Fine”, which contains the identical runs, but run at higher resolution to determine the convergence behavior of the code, or “/test_output_small”, which are the same runs as the standard case, but including only the first and last plot dumps to limit the /test_output file size. If this version is delivered, copy to a new folder called /test/output and run the test suite to fill out the other files (see below).

Any of the test cases can be run using the normal SPHC code launch methods. In UNIX installations, the command-line execution of the code is discussed in the SPHC User Manual. Batch execution consists of creating a file with a list of the appropriate “sphc” commands for each case.

In Windows installations, a user interface, SPHCInt is available to run individual cases. The interface is shown below (set up for the first test case), and discussed in detail in the SPHC User Guide.
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For testing and validation (of a new installation, say), all of the tests are normally rerun, and the output is then compared to the standard set of runs or to the images shown in this document. Since machines and compilers differ in word length, etc., exact duplication of each run is not expected, but the results should reproduce all of the physical aspects of the test – such as shock strength and location, pressures, and other verifiable aspects of the test. The acceptable variations might include slightly different particle locations and distribution, local “jitter” in unstable regions, and other minor items. Many tests include geometry variations and symmetry assumptions, and the effects of these can be ascertained by rerunning with different conditions specified.

For Windows installations, a script is available to run all of the tests in simultaneously. All tests will usually run in this mode in under 5 minutes on a desktop workstation. The script name is TestDriver2.s, shown below. This script is written in the “S_Tran” format, and requires the routine “stran.exe” to be assigned to the “*.s” extension. This is the same scripting language that is used in SPHC setup files, in which case an onboard SPHC version is used that includes code setup extensions. See the “S-Tran User Guide” for coding details. The script format is mainly pseudo-code, and is fairly obvious in structure. Several formalities include: variable names starting with lower case letters are system commands and variables, those starting with upper case letters are user defined variables (defined when first used), and those starting with “$” are string variables. Three types of comments are allowed, as shown below. The test driver is listed below, note that some lines describing file locations, etc., may have to be modified for each installation. Also, the variables First_run and Last_run can be modified to select a subset of cases for testing.

TestDriver2.s


#---this version is set up for simultaneous running. Takes 5 min---

show_line "-----SPHC test battery script2-----"

/*---set up the directories for batch running:---------
    \do_runs                    (pick your name)
        \run1                   (pick your name)
            run1.inp            (same inp name)
        \run2
            run2.inp            (same inp name)
        ...
        Driver.s                (this file)
-----------------------------------------------------*/

#---put all strings with backslashes in quotes!!!---

$Exe_folder = "c:\home\sdat\"   // location of executable
$Run_folder = ""                // data folder. blank=local
First_run = 1                   // first case to do
Last_run = 22                   // last case to do

#---prompt for changes---
show_nl
input $Exe_folder //$Run_folder
show_nl

#---run list---
#   directory name MUST MATCH the .inp file name!!!!

$Run[1] = shock;     $Run[2] = cone;      $Run[3] = plate1d
$Run[4] = udri;      $Run[5] = rod;       $Run[6] = tennis
$Run[7] = cubes;     $Run[8] = taylor;    $Run[9] = plate3d
$Run[10] = mg;       $Run[11] = double;   $Run[12] = foam_cyl
$Run[13] = noh_cyl;  $Run[14] = drop2D;   $Run[15] = drop3D
$Run[16] = wave1;    $Run[17] = burn_test;$Run[18] = cyl3D
$Run[19] = blast;    $Run[20] = blast2D;  $Run[21] = flow
$Run[22] = drop3D_cyl

#---execute the runs in a loop---
for_i = First_run Last_run
    $run_folder = $Run_folder $Run[i] "\"

    #---first delete former results---
    $str = "del " $run_folder "\s.*"    //  use appropriate system command
    system $str                       

    #---now do the run---
    $str = "start " $Exe_folder
    $str = $str "sphc i " $Run[i] ".inp " $run_folder " >" $run_folder "\screen.txt"
    show_nl
    show_field $date ":  "
    show_field "Beginning run " $Run[i] ....
    system $str                             // call SPHC here
end_i

show_nl



Verification of each result is most easily done by execution of the “case.thor” file in each run folder, which usually is set to show the setup configuration, the stepping through the plot dumps until the final result is seen. Here we show the initial and final results that are considered to be “correct”, as well as a few other plots that can be checked if needed.
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Test Descriptions and Results

[bookmark: _Toc48056973][bookmark: _Toc48894969]Shock Tube – 1D

Computing a simple shock tube solution was the first major hurdle for the SPH technique. Unlike a grid based code, the SPH particles for a fluid are unconstrained, and unless carefully controlled, they easily overrun and penetrate adjacent particles near the shock front even in the weak shock case. It took most of the 1975-85 decade to perfect the specialized approach to this problem used in SPHC. See Monaghan and Gingold 1983 for a description of the basic SPH techniques required for shocks. Since these techniques are so specific and so sensitive, we have found that even a small deviation from the following accurate test case should be regarded as a serious code problem that needs fixing. These methods are now built into the code defaults and require no direct user seettings for most problems.

This test is a 1 dimensional (planar) shock tube test case. We model a tube of length 1 cm (0-1) filled with ideal gas, and having a membrane at location 0.4. Density to the left of the membrane is 4 g/cc, to the right is 1 g/cc.  Scaling to more reasonable densities does not affect the results. Both sides have temperatures of 300K, mean molecular weight of 1, and gas gamma of 5/3. At time 0 the membrane is burst, and the development is followed for 1.5e-6 sec, at which time the shock has propagated to 0.80 cm, the contact surface is a density jump at about 0.50, and a rarefaction wave has propagated to the left. Run time for this case was 2.84 s.
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Velocity and pressure variations are shown above. The pressure in the SPHC run has a tendency to spike at the interface, caused by the abrupt jump in the initial condition, which cannot be modeled by a smoothing code. The acceptably small effect shown here is due to a setup smoothing operation (last line of setup, below). This should be included in all problems with density discontinuities at time 0.

This case has an analytic solution, easily obtained from any fluid dynamics text. The following figure shows the comparison of the model result (light blue) to the analytical result (dark blue). The model shows some slight smoothing, but matches the desired result very closely. This agreement improves with finer zoning (more particles), as expected.

[image: ]

Data probes are defined at X locations 0.25, 0.50, and 0.75. The “history.thor” file produces the following history plot for the density variation at these locations.
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The full listing for this test case is shown below ( file   =   shock.inp).

#====shock tube test case====

problem_title "Shock 1D"
run_title "Std7"

    dimension = 1
    nparticles = 500

    max_time = 1.5e-6

    restart_dumps = 15
    hist_dumps = 30

    dump_accel
    dump_eos

#---------boundaries-------

set_boundary left
    location = 0.
    side low
end_boundary

set_boundary right
    location = 1.
    side high
end_boundary

#-------data probes--------

set_probe fixed 0.25 0. 0.
set_probe moving 0.5
set_probe fixed 0.75

#-------regions----------

set_region "high den"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 4.
    temp = 300.
end_region

set_region "low den"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 1.
    temp = 300.
end_region

#---- model build follows----

begin_region "high den"
    part_mult = 0.4
    do_block 0.4 1.0 1.0
    translate_reg 0.2 0. 0.

begin_region "low den"
    part_mult = 0.6
    do_block 0.6 1.0 1.0
    translate_reg 0.7 0. 0.

smooth 2 1 1

  
  
[bookmark: _Toc48056974][bookmark: _Toc48894970]Noh Shock – 1D

The “Noh” test is a variation on the shock tube in which a single region is used, moving toward a wall or origin at high velocity (see Noh, 1978). The SPHC test case is run in cylindrical geometry (flow converges toward an axis) at 1.e6 cm/s, or about Mach 30 for the ideal gas with gamma = 5/3. This a standard test for problems involving extreme compression, and has an analytic, self-similar solution. Run time for this case was 2.14 s.
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Most codes produce excess heating on axis for this problem. Only a hint of this is seen here in the form of a slight density dip on axis. In SPHC special treatment is needed to avoid this and other axis issues. The solution used here is a small offset from the axis at time 0. This also works for the planar and spherical cases.

The full listing for this test case is shown below ( file   =   noh.inp).

#====shock tube test case====

  problem_title "Noh"

  /* Noh problem, cyl or sphere case  */
  /* Result is very sensitive to initial setup near origin  */

#---units---
Usec = 1.e-6
Mtr = 100

    dimension = 1
    nparticles = 400   // 100 runs, but rough   400 ok   800 better
    Sphere = false        //  spherical case, false for cyl

    if Sphere  run_title = "sph"
    if ~Sphere run_title = "cyl"

    if Sphere  spherical
    if ~Sphere cylindrical

    max_time = 60*Usec

    restart_dumps = 6

    hist_dumps = 60

    pert_size = 0.
    h_inp = 1.5
    h_vary = true
    quiet_start_solid false

    debug_part = 2

    energy_smooth .2 0

    #---viscous diffusion---
    //  needed in spherical case
    if Sphere
      av_g1 = 1
      av_g2 = 0
    end_if

    dump_eos

    Vel = -1.e6   // inward velocity

    Shift = .01     // exclude singular origin

#---------boundaries-------

set_boundary left
    location = Shift
    side low
end_boundary

set_boundary right
    location = 1*Mtr+Shift
    side high
    velocity Vel
end_boundary

#-------regions----------

set_region liner
    material pg
    eos pg
    mu 1
    gamma 5/3
    density = 1
    temp = 10    // should be 0, code can't do 0
end_region

#---- model build follows----

set_no_neg 1 0 0    // needed for planar setup

begin_region liner
    part_mult = 1
    do_block 2*Mtr 0 0  
    translate_reg Shift 0 0 
    velocity_reg Vel 0 0 


[bookmark: _Toc48056975][bookmark: _Toc48894971]Blast Wave - 1D

This test case is often referred to as the “Sedov” similarity solution, but was first derived by von Neumann and Taylor in 1941 – see the Los Alamos report LA2000 (Bethe, et al 1947) for details. This test models the release of a large amount of energy at a point in space resulting in a strong, spherical shock front propagating outward. The properties of the atmosphere (i.e.  of an ideal gas) are the only parameters. This case models a 1 dimensional spherical explosion, the next case repeats the identical test, but using a 2 dimensional model.  The green line shown in the final velocity plot shows the theoretical slope for this case. The deviation is caused by the finite sized central initial core. Run time for this case was 18.40 s.

[image: ] 
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Three data probes are defined at 0.30, 0.50, and 0.70 in X. The “history.thor” plot produces the plot below. The larger time gap between the two rightmost peaks indicate a slowing of the front.
[image: ]
The full listing for this test case is shown below ( file   =   blast.inp).

#====blast wave test case====

problem_title "Blast 1D"
run_title "Strng"

    dimension = 1
    nparticles = 1000

    max_time = 1.0e-6

    restart_dumps = 20
    plot_dumps 20
       plot_press
    hist_dumps = 800

    err_tol 0.01

    dump_accel
    dump_eos

    spherical   //  spherical wave!

    Outer = 4
    Bdry = 0.04*Outer

#---------boundaries-------

set_boundary left
    location = 0.
    side low
end_boundary

set_boundary right
    location = Outer
    side high
end_boundary

#-------data probes--------

set_probe fixed 0.3*Outer 0. 0.
set_probe fixed 0.5*Outer 0 0
set_probe fixed 0.7*Outer 0 0

#-------regions----------

set_region "high temp"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 1.
    temp = 1e8
end_region

set_region "low temp"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 1.
    temp = 300.
end_region

#---- model build follows----

begin_region "high temp"
    part_mult = Bdry/Outer
    do_sphere Bdry

begin_region "low temp"
    part_mult = (Outer-Bdry)/Outer
    do_sphere Outer Outer-Bdry

smooth 2. 1 1
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This test case illustrates the type of changes needed to run a 2D version of the blast wave case shown above. The setup here is to define a ¼ sphere in the X/Y plane with the “cylindrical” option (Y axis) and “symmetry y” to install a reflect boundary at Y = 0. This will result in a full sphere simulation the same as the 1D case with “spherical” specified, above.

In many SPHC runs simply changing the dimension variable from 1 to 2 or 3 and adding extra particles will convert to the dimension desired. In this case several other changes were required.
1. Probe locations are moved slightly off axis to avoid axis effects.
2. The radius of the hot inner region was extended from 0.04 to 0.10 in order to include a few more hot particles at the axis at time 0. Another way to do this would be to use a “grid_ratio” command.
3. The temperature of the extended hot region was lowered from 1.e8 to 8.e6 to make the energy of the inner region approximately the same as the 1D test case. This correction is not exact and will result in some small deviations.

Run time for this case was 38 s.

[image: ]
The perfect curcular shape of the blast front is a test of the “cylindrical’ code option. The very small perturbations along the horizontal and vertical axes show that the symmetry treatment in X and Y, and at the origin is working. The roughness along the contours of different density colors (esp. light and dark blue) are caused by the early stage of a physical instability between the hot and cool regions of the blast flow that develops at later time. See the “Explosion” section, below, for more details of this instability.

Comparing the history plot to the 1D case, the results are similar in amplitude, timing and shape, but with some additional roughness due to the 2D zoning that the fixed probes cannot entirely resolve (the probe routine sums over nearby particles at each time, and some variations are expected). In applications, use more particles to overcome this.
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 The full listing for this test case is shown below (file   =   blast2D.inp).

#====blast wave test case====

problem_title "Blast 2D"
run_title "Strng"

    dimension = 2
    nparticles = 10000

    max_time = 1.0e-6

    restart_dumps = 20
    plot_dumps = 40
    hist_dumps = 600

    err_tol 0.01

    dump_accel
    dump_eos

    cylindrical  // makes a spherical wave

    symmetry y

    Outer = 4
    Bdry = 0.1*Outer   // increased to help resolution


#---------boundaries-------

set_boundary outer
    location = Outer
    side high
    direction r
end_boundary

#-------data probes--------

set_probe fixed 0.3*Outer 0.1  0.
set_probe fixed 0.5*Outer 0.1  0
set_probe fixed 0.7*Outer 0.1  0

#-------regions----------

set_region "high temp"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 1.
    temp = 8e6    //  to match the 1D case energy
end_region

set_region "low temp"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 1.
    temp = 300.
end_region

#---- model build follows----

begin_region "high temp"
    part_mult = (Bdry/Outer)^2
    do_sphere Bdry

begin_region "low temp"
    part_mult = ((Outer-Bdry)/Outer)^2
    do_sphere Outer Outer-Bdry

smooth 2. 1 1
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This is a standard test of an impact of an aluminum plate travelling at about the speed of sound in air (0.39 km/s, or 1181 ft/s) with another aluminum plate with twice the thickness of the travelling plate. The physics for this test is simplified (linear elastic equation of state). The main result of the test is the generation of strong shocks which propagate to the ends of the stationary plate, reflect, and then converge to form a strong rarefaction wave exactly at the center of the second plate. Early forms of SPH codes showed strong numerical instability at this point (shaded area, below. No pressure fluctuations are seen in this test. The present code is designed to avoid this instability, and this test is a test of this. Run time for this test is 28 s.
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Data probes are included in this run at the interface and in the interior of the plates on either side. The density variation is shown below.
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The full listing for this test case is shown below (file   =   plate1d.inp).

#====flyer plate test case====

problem_title "Plate_1D"
run_title "elastic"

    dimension = 1
    nparticles = 500

    //space_adjust = 1.02

    max_time = 6.e-6

    restart_dumps = 30
    hist_dumps = 60

    pert_size = 0.  // no rand
    pmin = -1.e11   // no pmin

    dump_accel
    dump_eos

#-----user variables-----

  Veloc = 0.39e5
  Thick1 = 0.608  // left slab
  Thick2 = 1.27   // right slab

#-------strength-------

strength_model elastic

#-------regions----------

set_region "moving"
    material al
    //eos usup
    eos linear
end_region

set_region "fixed"
    material al
    //eos usup
    eos linear
end_region

#-------data probes--------

set_probe moving -Thick1/2
set_probe moving 0.
set_probe moving Thick2/2

#---- model build follows----

begin_region "moving"
  part_mult = Thick1/(Thick1+Thick2)
  do_block Thick1 1.0 1.0
  translate_reg -Thick1/2 0. 0.
  velocity_reg Veloc 0 0

begin_region "fixed"
  part_mult = Thick2/(Thick1+Thick2)
  do_block Thick2 1.0 1.0
  translate_reg Thick2/2 0. 0.

    


[bookmark: _Toc48056978][bookmark: _Toc48894974]Flyer Plate – 3D

This is the same case discussed above, but for the 3D case. Movement is in the X direction, symmetry conditions are used in th Y and Z directions, and “reflect” boundaries are used in front and on the top sides. The side view pressure plot compares well with the 1D results shown above. To save time this test is only run to 1 s, but could be extended if needed. Run time for this case is 84 s.
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Probe data for this case is shown below.
[image: ]

Full listing for this case is shown below – file is plate3d.inp.

#====3D flyer plate test case====

problem_title "Plate_3D"
run_title "03"

    dimension = 3
    nparticles = 20000

    space_adjust = 1.05

    max_time = 1.e-6

    restart_dumps = 10
    hist_dumps = 50

    pert_size = 0.  // no rand
    h_inp = 1.
    pmin = -1.e11   // no pmin

    dump_accel
    dump_eos

#-----user variables-----

  Veloc = 0.39e5
  Thick1 = 0.608  // left slab
  Thick2 = 1.27   // right slab

#-------strength-------

strength_model elastic  //off for inst

#-------regions----------

set_region "moving"
    material al
    //eos usup
    eos linear
end_region

set_region "fixed"
    material al
    //eos usup
    eos linear
end_region

#-------data probes--------

set_probe moving -.3
set_probe moving 0.
set_probe moving 0.6

#-------boundaries--------

symmetry y
symmetry z

set_boundary top
  location 0.5
  direction y
  side high
  type reflect
end_boundary

set_boundary front
  location 0.5
  direction z
  side high
  type reflect
end_boundary


#---- model build follows----

begin_region "moving"
  part_mult = Thick1/(Thick1+Thick2)
  do_block Thick1 1.0 1.0
  translate_reg -Thick1/2 0. 0.
  velocity_reg Veloc 0 0

begin_region "fixed"
  part_mult = Thick2/(Thick1+Thick2)
  do_block Thick2 1.0 1.0
  translate_reg Thick2/2 0. 0.
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This is a test of the conservation of angular momentum in the new Virtual Stress Point (VSP) feature of the SPH implementation in SPHC. “Classical SPH” (see Libersky, et al 1993) cannot handle large angle rotation of objects due to stress tensor edge errors for solid objects. VSP uses a centering technique on the stress tensor terms to eliminate these errors and allow arbitrarily large rotations.

Although the test is called “rotating rod”, and a do_cylinder command is used in the setup deck, in order to facilitate a rapidly running test case, this version is run in 2D, in which case the same setup produces a model of a long plate seen edge-on rotating around its long axis. Since the plate starts with zero stress, the rotation causes some initial oscillations in length and stress field of the rod, Maximum deviatoric stress is at the center of the plate, and settles down to about 2.e9 cgs ( 2 kBar) at 100 micro-s. Stress at the ends of the plate cross section remain zero, as expected. The rotational velocity of the plate remains exactly constant for any run length. This feature of the code is especially important for high energy simulations producing rapidly rotation debris.
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The setup file for this case is found in “rod.inp”. This case runs in 16 s.

#==== rotating rod test case ====

problem_title = "Rotating Rod"
run_title = 3-fast
dimension = 2
nparticles = 500

strength_model elastic

max_time 1.e-4
dump_accel

space_adjust = 1.1
pert_size = 0
error_control false
pmin = -1.e11

restart_dumps = 20 
hist_dumps = 100

#----region def----

set_region rod
  material al6061
  eos usup
  track_com
end_region

#--------model build------

begin_region rod
  part_mult 1
  do_cylinder .05 1
  spin_reg 0 0 1.e5



[bookmark: _Toc48056980][bookmark: _Toc48894976]Rotating Cone – 2D

This is a test of the “do_arc_cone” command, which is usually used to construct a simple nose cone. It also tests the rotational properties of the code, as in the previous test case. 

In this case we set up a long rod with an arc cone cross section, then rotate the rod about its center line rapidly to study the resulting stress field in this non-symmetrical shape. Surprisingly, the maximum stress in the cone are not found at the center, as in the rotating rod test, but symmetrically off-center.

[image: ] [image: ]

The run setup is found in file cone.inp.  This test runs in 10 s.

#==== rotating cone test case ====

problem_title = "Rotating Cone"
run_title = 3-fast
dimension = 2
nparticles = 500

strength_model elastic

max_time 1.e-4
dump_accel

space_adjust = 1.1
pert_size = 0

restart_dumps = 20 
hist_dumps = 100

#----region def----

set_region rod
  material al6061
  eos usup
  track_com
end_region

#--------model build------

begin_region rod
  part_mult 1
  do_arc_cone .33 .66 
  center_com       // fine tune centering
  spin_reg 0 0 1.e5



[bookmark: _Toc48056981][bookmark: _Toc48894977]Cube Impact – 2D

This test models the impact at relatively low velocity (2,000 cm/s = 0.20 km/s) of two off-center aluminum cubes (modeled in 2D as long rods) and the subsequent elastic rebound in free space. The resulting motion is a combination of elastic oscillations and rotation. This test is to see if the rebound is reasonable and stable, and no analytic or experimental comparisons are used. Adding comparison data could be done, but would then become a test of the material model, which is not intended in this case.

These plots are colored on deviatoric stress.
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The input file for this case is “cubes.inp”.  Run time is 23.45 sec to 50 sec model time..

#====colliding cubes====

problem_title "Cubes Test"
run_title "1"

    C_size = 1
    C_vel = 2.e4

    dimension = 2
    nparticles = 2000
    space_adjust = 1.05
    max_time = 5.e-5
    restart_dumps = 20
    hist_dumps = 80
    error_control false
    dump_eos
    dump_accel

#--------strength--------

strength_model elastic
slip_regions

#-------regions----------

set_region cube1
    material al1350
    eos usup
end_region

set_region cube2
    material al1350
    eos usup
end_region

#---- model build follows----

begin_region cube1
    part_mult = 0.5
    do_block C_size C_size C_size
    velocity_reg 0. -C_vel 0.
    translate_reg C_size/3 C_size/2 0

begin_region cube2
    part_mult = 0.5
    do_block C_size C_size C_size
    velocity_reg 0. C_vel 0.
    translate_reg -C_size/3 -C_size/2 0



[bookmark: _Toc48056982][bookmark: _Toc48894978]Cylinder Fracture – 3D

This is a simple case of a debris field created from an object completely fractured via expansion. This expansion is normally caused by an interior explosion. An explosive event imparts a roughly radial acceleration on surrounding structures, which continues until fracture allows the hot gas to vent. From this point on, the outward velocity of the fragments are constant until atmospheric drag forces cause deceleration. Here we simulate such an event by starting with an intact cylinder, but with a radially outward velocity field. This causes motion that induces fracture that depends on the material, strength model and fracture model specified. In this case the material is Aluminum 6061, the strength model is elastic-perfectly plastic, and the fracture model is the usual strain-to-fracture criterion, with a Weibull distribution of failure strengths between SPH particles. The initial velocity of the material is set to 40,000 cm/s (1312 ft/s) at the radius of the cylinder, but linearly decreases to 0 at 4 times the radius (i.e. near the ends). This simulates the decrease in blast effect farther away from the origin. This test is particularly useful for evaluating the effects of the various fracture parameters quickly and easily, before adding the details of any particular scenario.

These are the initial and final states of the run, colored on phase. Full symmetry is assumed, which allows the 7072 particles to nicely resolve 1/8 of the full cylinder. The reflected segments are filled in with the Thor plotter.


[image: ][image: ]
Further dissuasion of this type of simulation can be found in the “Explosion” section, below. 

This is the input setup file “cyl3D.inp”.  Run time for this test is 1.42 min.

#==== exploding egg test case====

problem_title "Cyl"
run_title "1"

Usec = 1.e-6

    dimension = 3
    nparticles = 10000

    space_adjust = 1.10
    max_time = 50*Usec
    restart_dumps = 5
    plot_dumps = 20
    hist_dumps = 40
    h_inp = 1.0
    h_vary = true
    error_control false

    pert_size 20   // (up from 1)

symmetry x
symmetry y
symmetry z

#--------strength--------

strength_model elas_perf_plas
    fracture

#-------regions----------

set_region ball
    material al
    eos grun

  strength_model elas_perf_plas
    fracture
    weibull

end_region

#---- model build follows----

Vel = 4.e4 
Radius = 3
Thick = 0.20

begin_region ball
    part_mult = 1
    do_cylinder Radius 4*Radius Thick

    radial_velocity
      points 0 4*Vel    Radius Vel   4*Radius 0
    end_velocity



[bookmark: _Toc48056983][bookmark: _Toc48894979]Tennis Ball – 2D

This is a classic simulation of a hollow elastic tennis ball impacting a wall at 112 mph (5000 cm/s = 164 ft/s). At this speed the sphere shows significant shape distortion, and large tensile forces develop. In some early SPH codes, this is a prime scenario for the “tensile instability” to develop, causing the ball to fracture like a Christmas-tree ornament. The SPH run is perfectly stable.

These plots are colored on volumetric pressure, which can cause instability when negative.
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Setup shown below. Run time is 16.5 s.

problem_title "Tennis"
run_title "2"

    dimension = 2
    nparticles = 600

    space_adjust = 1.03
    max_time = 20.e-4
    restart_dumps = 20
    hist_dumps = 40
    h_inp = 1.0
    h_vary = true
    error_control false

#-------regions----------

set_region ball
    material rub
    eos grun
    pmin = -1.e11
end_region

#--------strength--------

strength_model elastic

#------boundary-----

set_boundary wall
  direction y
  slip
end_boundary

#--this gives cylinder
//symmetry x

#--or...this gives a sphere
cylindrical

#---- model build follows----

begin_region ball
    part_mult = 1
    do_sphere 3.0 .75
    translate_reg 0. 3.2 0.
    velocity_reg 0. -5.e3 0. // 100 mph




[bookmark: _Toc48056984][bookmark: _Toc48894980]Solar Panel Impact – 2D

This is a simplified model of a spherical water drop impacting a space station solar array (layers of glass and kapton – a new material defined in this setup) at 112 mph (5000 cm/s = 164 ft/s). Such liquid is sometimes ejected from docked vehicles, and can cause damage if not properly configured. These results have been compared to experimental damage, as well as observed damage on the solar arrays. This run uses a “Weibull” fracture model for the glass layers. Color in these plot represents “phase”, defined as -10 = ‘fractured”, 0 = “solid”, 10 = “liquid”, 20 = “vapor”.
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Setup shown below. Run time is 16.5 s.

A feature of this setup is that it retains the “Sphinx” input format, which requires all input quantities to be numeric values. An updated SPHC input would ordinarily assign local variable names to all input quantities and show computed values as algebraic formulae, allowing variations to be easily specified. Note that SPHC will run SPHINX input files, with only minor adjustments.

#====droplet on solar panel====
#   Maria Greene's setup (Boeing) of a water drop 
#     hitting a solar panel on station
#   Water comes from a docked shuttle

problem_title "MG"
run_title "weib"

    dimension = 2
    nparticles = 2500
    cylindrical
    space_adjust = 1.05
    max_time = 2.e-6
    restart_dumps = 20
    hist_dumps = 20
    err_tol 0.01
    slip_regions 0.5

#------boundaries--------

set_boundary outer
  location 0.1
  side high
  type fixed
end_boundary

#------materials---------

add_material kapton
    rho_0 = 1.56
    cs_0 = 5.376e5
    cv_0 = 1.09e7
    s_shock = 1.55
    gamma_G = 2.10
    ey = 2.6e10
    pr = 0.34
    sy = 0.69e9
    st = 1.72e9
    em = 0.75
end_material   

#--------strength--------

strength_model elas_str_hard
    fracture

#-------regions----------

set_region sphere
    material h2o
    eos grun
end_region

set_region plate
    material glass
    eos grun
    weibull .1 1
end_region

set_region scell
    material glass
    eos grun
    weibull .1 3
end_region

set_region subst
    material kapton
    eos usup
end_region

#---- model build follows----
  #  this is SPHINX style input, with numerical args
  #  for SPHC prefer to define variables instead

begin_region sphere
    part_mult = 0.03
    do_sphere 0.01
    velocity_reg 0. -3.e5 0.
    translate_reg 0 .01 0

begin_region plate
    part_mult = 0.2
    do_cylinder 0.1 0.02
    translate_reg 0.0 -0.01 0.

begin_region scell
    part_mult = 0.2
    do_cylinder 0.1 0.02
    translate_reg 0.0 -0.03 0.

begin_region subst
    part_mult = 0.6
    do_cylinder 0.1 0.06
    translate_reg 0.0 -0.07 0.



[bookmark: _Toc48056985][bookmark: _Toc48894981]Ball on Plate Impact – 2D

This is a classic “Ball on Plate” impact in which a sphere (diameter = 4.765 mm) travelling at about orbital velocity (6.6 km/s) impacts a thin aluminum plate (Whipple shield). This case (labeled “udri”) models experiment number 1360 carried out at the University of Dayton. The plots show the initial and final configurations of the run colored on “phase” (blue = fractured, red = melted). Note that the lower region of the final plot shows melted material at the bottom, and spalling (fractured shell material) at the rear (top). 
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This run can be extended to 10 s to compare with a UDRI X-Ray photo of this experiment, shown below (model at the top, annotated photo at the bottom). The spalled material. As well as the liquid frontal volume are clearly visible in each case, and the agreement between model and experiment is excellent.


[image: C:\home\RFS\Web Picts\udri.jpg]

This run takes 5.4 s and is labeled “udri”. Listing below.

#====ball on plate test case====

problem_title "UDRI"
run_title "4-1360"

#----basic 2D settings---
    dimension = 2
    nparticles = 2000
    space_adjust = 1.05

    cylindrical

    max_time = 2.5e-6
    restart_dumps = 25
    hist_dumps = 50
    dump_accel
    dump_eos

    err_tol 1.e-3
    energy_smooth 0.2 0

    set_units stress kbar 1.e9

#-------regions----------

set_region ball
    material al2017
    eos grun
end_region

set_region plate
    material al6061
    eos grun
    thin
end_region

#--------strength--------

strength_model elas_str_hard
    fracture

#---- model build follows----

begin_region ball
    part_mult = 0.9
    do_sphere 0.4765
    translate_reg 0. 0.4765 0.
    velocity_reg 0. -6.62e5 0.

begin_region plate
    part_mult = 0.1
    do_block 2. 0.0465 2.
    translate_reg 0.0 -0.0232 0.


[bookmark: _Toc48056986][bookmark: _Toc48894982]Plate and Bulkhead Impact – 2D

The success or failure of the previous case depends on the behavior of the debris cloud at much later times, and how it interacts with a pressure bulkhead that is being protected. This impact is similar to the previous case, with a sphere diameter of 4 mm and a velocity of 7 km/s. All materials are aluminum, but different alloys, as used in the experiments. In this case, much less resolution is used in the impacting sphere, but the calculation is carried to a later time during which the debris cloud develops completely. The cloud then impacts on a second plate, representing the bulkhead. The experiment for this case showed some surface damage to the bulkhead, but no penetration.

This case is coded in the more modern setup style than the previous case. It includes parameter specification using local variables, parameter inclusion in the problem title strings, input and output unit conversion factors, plot dumps, and new material specifications. In addition, it includes several new techniques for increasing the accuracy of this type of simulation, including the “thin” flag for thin layers, outer absorb boundaries to limit the volume of the calculation and drop material that has been “left behind” from the first impact, and the “delay_regions” command, that removes the bulkhead plate from the calculation (after the initial dumps) until material has moved into its vicinity. These options greatly reduce the run time without affecting the result. Use of local variable names, also greatly increase the readability of the code and make it very simple to change variables, dimensionality, run resolution or problem design.
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File name is “double”. Run time is 10.4 s.

#====double plate test case====
#  modified 6/24/2004 - rfs

#---set probelm params---------------------
  Spd = 7.0
  Balldiam = 0.40
#------------------------------------------

#---construct title strings---
decimals 1; $str = "V "; str_add $str @Spd
problem_title $str
decimals 2; $str = "Lc "; str_add $str @Balldiam
run_title $str

#----------options------
#    debug_part = 1
#-----------------------

#----conversion factors----
  Cm = 1
  In = 2.54
  Ft = 12*In
  Psi = 6.895e4
  Ksi = 1.e3*Psi
  Bar = 1.e6
  Kbar = 1.e9
  Lbf = 4.4482e5
  Lbm = 453.59
  Usec = 1.e-6
  Msec = 1.e-3
  Ftps = Ft
  Kmps = 1.e5
  Lbft3 = 1.6018e-2
  Ftlb = 1.3558e7
  Hz = 2*pi

  //  output units
  set_units location cm Cm
  set_units velocity ft/s Ftps
  set_units time ms Msec
  set_units density lb/ft3 Lbft3
  set_units stress psi Psi
  set_units probe_stress psi Psi
  set_units bdry_force lb Lbf
  set_units energy ftlb Ftlb

#------Setup variables-------

    Ballspd  = Spd*Kmps

    Wallthk = 0.16
    Wallxz = 2.0

    Wall2thk = 0.32
    if Spd>5         // narrower at lower speeds
      Wall2xz = 10
    else
      Wall2xz = 5
    end_if

    Standoff = 12.

#----2D settings---

    dimension = 2
    nparticles = 1500
    space_adjust = 1.1

    cylindrical

    max_time = 40.e-6
    restart_dumps = 5
    plot_dumps = 20
    hist_dumps = 100
    err_tol = 0.01
    energy_smooth 0.2 0

#---------set delay here----------------
  Delay = 1-(Spd-7)/15
  delay_regions 3 0.8*Standoff/Ballspd

#---------------------------------------
# this turns on the vaporization temp
#  correction for rho > rho0
#  based on Al, Cu and Zn data

    eos_den_dep  

# this randomizes the particles slightly

    pert_size = 5 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Rball   = Balldiam/2.
    Ballvol = pi*Rball^2
    Wall1vol = Wallxz*Wallthk
    Wall2vol = Wall2xz*Wall2thk

    Totvol  = Ballvol+Wall1vol+Wall2vol

#------materials------

# Al2024-T81

add_material al2024
    rho_0 = 2.78
    a_mol = 27
    a_atm = 26.95
    z_atm = 13
    ion_en = 5.96
    gamma_G = 2.1
    s_shock = 1.55
    gamma_mol = 1.6667  
    cs_0 = 5.38e5
    cv_0 = 0.904e7
    cv_liq = 1.e7
    tmelt = 916 
    hmelt = 3.9e9
    tvap = 2500    //??
    hvap = 1.e11   //??
    ey = 72.4e10
    pr = 0.33 
    sy = 450.e7
    st = 485.e7
    em = 0.06 // reduced 3/13
    br = 0.3
end_material

# Al 2219-T87

add_material al2219
    rho_0 = 2.84
    a_mol = 27
    a_atm = 26.95
    z_atm = 13
    ion_en = 5.96
    gamma_G = 2.1    //?
    s_shock = 1.55   //?
    gamma_mol = 1.6667  
    cs_0 = 5.38e5
    cv_0 = 0.864e7
    cv_liq = 1.e7
    tmelt = 916 
    hmelt = 3.9e9
    tvap = 2500    //??
    hvap = 1.e11   //??
    thmcon = 1.20e7
    ey = 72.e10
    pr = 0.33 
    sy = 395.e7
    st = 475.e7
    em = 0.10
    br = 0.3
end_material

#--------strength--------

strength_model high_str_rate
    fracture

#------boundaries-----

set_boundary top
    direction y
    location -4
    side high
    type absorb
    time 10/Ballspd
end_boundary

set_boundary outer
    direction x
    location Wall2xz/2
    side high
    type absorb
end_boundary

#-------regions----------
// ties to Palmieri et al. in HVIS2000
set_region ball
    material al2024
    eos grun
end_region

set_region bumper
    material al2024
    eos grun
    thin            // 2D only
end_region

set_region backwall
    material al2219
    eos grun
    thin            // 2D only
end_region

#---- model build follows----

get_reg_density ball Bden
get_reg_density bumper Bprden
get_reg_density backwall Bkwlden

begin_region ball
    part_mult = 1.5*Ballvol/Totvol
    do_sphere Rball
    mass_reg Bden*Ballvol/2
    translate_reg 0. 1.1*Rball 0.
    velocity_reg 0. -Ballspd 0.

begin_region bumper
    part_mult = 1.5*Wall1vol/Totvol
    do_block Wallxz Wallthk Wallxz
    mass_reg Bprden*Wall1vol/2
    translate_reg 0. -Wallthk/2 0.

begin_region backwall
    part_mult = Wall2vol/Totvol
    do_block Wall2xz Wall2thk Wall2xz
    mass_reg Bkwlden*Wall2vol/2
    translate_reg 0. -2*Wallthk-Standoff 0



[bookmark: _Toc48894983]Water Drop in Mach 5 Wind Tunnel – 2D

Development of a robust wind tunnel simulation has proven to be elusive for SPH codes. The natural idea of introducing new particles at the inflow plane has been found to produce unacceptable unevenness in the flow. SPHC has a wind tunnel option that has proven to be stable and accurate for most problems. This implementation uses reciprocating pistons at the entry and exit planes. A buffer of material is inserted into the flow at the entry for each cycle, which are computed automatically by the code during the run. The new material inserted each cycle merges with the flow from the previous cycle. This technique works perfectly with supersonic flow, and usually gives an adequate model even at subsonic speeds, at least for early flow times.

Another challenging problem for any code is the interaction of a gas flow field and water droplets. The flow will change the shape and movement of the drop, which, in turn, will affect the flow field. This validation test includes the use of an advanced Van der Waals equation of state for the drop, use of the factor “mu” (see User’s Guide) to model the surface tension of the drop, and multi-layer resolution in the drop to increase the resolution in the outer layer of the drop to resolve the ablation at the edge.

The first water drop validation case uses a Mach 5 flow speed in a 2D model with cylindrical geometry along the axis of the tunnel. This models a spherical drop in 2 dimennsions.

Beginning and ending plots, colored on density:
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Run time is 19 sec. File name is “drop2D”,  input file follows.

#====shock tube test case====
#  2D Water Drop in Mach 5 flow

#  test case version
#  soft reflect outer boundaries
#  inflow and outflow boundaries

#  rfs - 8/9/8

problem_title "Drop"
run_title "2D"

//timers

  Atmden = 1.2928e-3
  In = 2.54
  Cm = 1
  Cmps = 1
  Ft = 12*In
  Ftps = Ft
  Psi = 6.895e4
  Gmpcc = 1
  K = 1

  set_units density Atm Atmden
  //set_units velocity ft/s Ftps
  set_units velocity cm/s Cmps
  set_units location cm Cm
  set_units stress psi Psi

#---user variables--------
    Drop_rad = .135*Cm

    Vel = 5*3.e4*Cmps  //  Mach 5 for test case

    Width = 0.8*Cm           // y direction  (1.2)
    Length = 1.0*Cm          // gas working region

    // if the inflow cycling causes noise, increase the
    //   inflow length
    Inflow_length = Length/8    // inflow region

    Shift = 0  //  use this to move drop position

    Density = 4*0.001783*Gmpcc  // high den (post shock)
    Temp = 357.*K

    quiet_start     //  needed to get uniform initial densities

    V1 = Length*Width  //*Width
    V2 = Inflow_length*Width  //*Width
    Vdrop = pi*sq(Drop_rad)   //5*1.33*pi*cub(Drop_rad)

    Vtot = V1+2*V2+Vdrop  // inflow region should be counted twice
#-------------------------

    dimension = 2
    nparticles = 2000   //  adjust as needed

    # space_adjust determines the max number of particles
    #   the block will expand in size due to the moving
    #     right boundary 
    #  may need adjusting if long times are desired
    #  try values, and check the memory used

    space_adjust 1.5 
                      
    max_time = 20.e-6

    restart_dumps = 2
    hist_dumps = 20
    plot_dumps = 10
     plot_temp
     plot_vx
     plot_vy
     plot_press
     plot_weber
     plot_db
     plot_probes

    pert_size = 0.0
    h_inp = 1.
    h_vary = true

    cylindrical
    
    energy_smooth
    pmin = -5e6   // standard

#--------probes-----------

set_probe fixed 0.2 0 0 2  // test in gas region

#---------boundaries-------

#---inflow boundary---

  set_boundary inflow
    direction y
    location = -Length/2-Shift-Inflow_length
    side low
    velocity = Vel
    buffer_width = Inflow_length
  end_boundary

#---outflow at right---
set_boundary outflow
    direction y
    location = Length/2-Shift
    side high
    type = reflect2
    buffer_width = Inflow_length
    velocity = Vel
    drift_velocity = Vel/10        // allow drift
end_boundary

#---tube walls---
set_boundary top
    direction x
    location = Width/2
    side high
    type soft_reflect
end_boundary
 
#-------regions----------

set_region drop
    material h2o
    eos moylan
    mu = 1.e-3   //  gives best surface tension effect
    pressure = 4*26.6*Psi  // equal to the gas pressure
end_region

set_region reg0   // this is the gas region with the drop
    material pg
    eos pg
    gamma = 1.4
    mu = 29.
    density = Density
    temp = Temp
end_region

#---normally the inflow region matches reg0
#   but, could be different to represent a shock, etc.
#   the inflow region will regenerate as needed

set_region inflow   // inflow region
    material pg
    eos pg
    gamma = 1.4
    mu = 29.
    density = Density
    temp = Temp
end_region

#---- model build follows----

begin_region drop
    part_mult = 4*2*Vdrop/Vtot
    do_sphere Drop_rad Drop_rad/3
    part_mult 4*0.2*Vdrop/Vtot
    do_sphere 2*Drop_rad/3

begin_region reg0
    part_mult = V1/Vtot
    do_block Width Length Width
    velocity_reg 0 Vel 0
    translate_reg 0 -Shift 0 
    trim_reg 1.75

#---build inflow block---must be last one---
begin_region inflow
    part_mult = V2/Vtot
    do_block Width Inflow_length Width
    velocity_reg 0 Vel 0
    translate_reg 0 -Length/2-Shift-Inflow_length/2 0


[bookmark: _Toc48894984]Water Drop / Rectangular Mach 5 Wind Tunnel– 3D

This is a 3D version of the previous test case. In this case the wind tunnel is modeled as rectangular in cross section, with double reflect symmetry conditions imposed to decrease the run time. For final results models, these conditions would normally be withdrawn and a longer. But more accurate, run would be the result. 

Note that at time 0 the inflow buffer is shown beyond the inflow boundary (at the left) for debugging the setup. At later times this buffer is not included in the plot or restart dumps.

Start and end of the simulation is shown, colored on density. Rear half of the simulation shown. Compare with previous case.
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During the run, recycle information will appear in the screen list as follows:

==>Recycle inflow boundary, time=1.91698e-05, Npart: 5611->6091
    new buffer=6092-6571

==>Recycle outflow boundary, vel=150000_cm/s, drift=15000_cm/s, cycle=9.25926e-07


Run time for this case was 1.80 min. File name is “drop3D.inp”, listing follows.

#====shock tube test case====
#  3D Water Drop in Mach 5 flow

#  test case version
#  soft reflect outer boundaries
#  inflow and outflow boundariesd

#  rfs - 8/9/8

problem_title "DropY"
run_title "3D"

//timers

  Atmden = 1.2928e-3
  In = 2.54
  Cm = 1
  Cmps = 1
  Ft = 12*In
  Ftps = Ft
  Psi = 6.895e4
  Gmpcc = 1
  K = 1

  set_units density Atm Atmden
  //set_units velocity ft/s Ftps
  set_units velocity cm/s Cmps
  set_units location cm Cm
  set_units stress psi Psi

#---user variables--------
    Drop_rad = .135*Cm

    Vel = 5*3.e4*Cmps  //  Mach 5 for test case

    Width = 0.8*Cm           // y direction  (1.2)
    Length = 1.0*Cm          // gas working region

    // if the inflow cycling causes noise, increase the
    //   inflow length
    Inflow_length = Length/8    // inflow region

    Shift = 0  //  use this to move drop position

    Density = 4*0.001783*Gmpcc  // high den (post shock)
    Temp = 357.*K

    quiet_start     //  needed to get uniform initial densities

    V1 = Length*Width*Width
    V2 = Inflow_length*Width*Width
    Vdrop = 5*1.33*pi*cub(Drop_rad)

    Vtot = V1+2*V2+Vdrop  // inflow region should be counted twice
#-------------------------

    dimension = 3
    nparticles = 10000   //  adjust as needed

    # space_adjust determines the max number of particles
    #   the block will expand in size due to the moving
    #     right boundary 
    #  may need adjusting if long times are desired
    #  try values, and check the memory used

    space_adjust 1.3 
                      
    max_time = 20.e-6

    restart_dumps = 2
    hist_dumps = 20
    plot_dumps = 10
     plot_temp
     plot_vx
     plot_vy
     plot_pressz
     plot_weber

    pert_size = 0.0
    h_inp = 1.
    h_vary = true

    symmetry x
    symmetry z

    energy_smooth
    pmin = -5e6   // standard

#---------boundaries-------

#---inflow boundary---

  set_boundary inflow
    direction y
    location = -Length/2-Shift-Inflow_length
    side low
    velocity = Vel
    buffer_width = Inflow_length
  end_boundary

#---outflow at right---
set_boundary outflow
    direction y
    location = Length/2-Shift
    side high
    type = reflect2
    buffer_width = Inflow_length
    velocity = Vel
    drift_velocity = Vel/10        // allow drift
end_boundary

#---tube walls---
set_boundary top
    direction x
    location = Width/2
    side high
    type soft_reflect
end_boundary
 
/*
set_boundary bottom
    direction x
    location = -Width/2
    side low
    type soft_reflect
end_boundary
*/

set_boundary front
    direction z
    location = Width/2
    side high
    type soft_reflect
end_boundary

/*
set_boundary back
    direction z
    location = -Width/2
    side low
    type soft_reflect
end_boundary
*/

#-------regions----------

set_region drop
    material h2o
    eos moylan
    mu = 1.e-3   //  best surface temsion
    pressure = 4*26.6*Psi  // equal to the gas pressure
end_region

set_region reg0   // this is the gas region with the drop
    material pg
    eos pg
    gamma = 1.4
    mu = 29.
    density = Density
    temp = Temp
end_region

#---normally the inflow region matches reg0
#   but, could be different to represent a shock, etc.
#   the inflow region will regenerate as needed

set_region inflow   // inflow region
    material pg
    eos pg
    gamma = 1.4
    mu = 29.
    density = Density
    temp = Temp
end_region


#---- model build follows----


// get exact sphere setup for testing, revert when done

begin_region drop
    part_mult = 2*Vdrop/Vtot
    do_sphere Drop_rad Drop_rad/3
    part_mult 0.2*Vdrop/Vtot
    do_sphere 2*Drop_rad/3

begin_region reg0
    part_mult = V1/Vtot
    do_block Width Length Width
    velocity_reg 0 Vel 0
    translate_reg 0 -Shift 0 
    trim_reg 1.75

#---build inflow block---must be last one---
begin_region inflow
    part_mult = V2/Vtot
    do_block Width Inflow_length Width
    velocity_reg 0 Vel 0
    translate_reg 0 -Length/2-Shift-Inflow_length/2 0




[bookmark: _Toc48894985]Water Drop / Cylindrical Mach 5 Wind Tunnel – 3D

This run duplicates the previous test case, but in a cylindrical wind tunnel to test the variation in the geometry and boundary conditions and their effect on the result. This is the same geometry as the 2D test case. Beginning and end of the simulation is shown below, colored on density.


[image: ][image: ]



Another view, compare to the previous runs.
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This run takes 2.52 min. Run file is “drop3d_cyl.inp”. Listing follows.


#====shock tube test case====
#  3D Water Drop in Mach 5 flow

#  test case version
#  soft reflect outer boundaries
#  inflow and outflow boundaries

#cylindrical version of inflow
#  rfs - 8/9/8   jr 4 23 18


problem_title "DropY_Cyl case"
run_title "3D"

//timers

  Atmden = 1.2928e-3
  In = 2.54
  Cm = 1
  Cmps = 1
  Ft = 12*In
  Ftps = Ft
  Psi = 6.895e4
  Gmpcc = 1
  K = 1

  set_units density Atm Atmden
  //set_units velocity ft/s Ftps
  set_units velocity cm/s Cmps
  set_units location cm Cm
  set_units stress psi Psi

#---user variables--------
    Drop_rad = .135*Cm

    Vel = 5*3.e4*Cmps  //  Mach 5 for test case

    Width = 0.8*Cm           // y direction  (1.2)
    Length = 1.0*Cm          // gas working region

    // if the inflow cycling causes noise, increase the
    //   inflow length
    Inflow_length = Length/8    // inflow region

    Shift = 0  //  use this to move drop position

    Density = 4*0.001783*Gmpcc  // high den (post shock)
    Temp = 357.*K

    quiet_start     //  needed to get uniform initial densities

    V1 = pi*Length*Width*Width/4
    V2 = pi*Inflow_length*Width*Width/4
    Vdrop = 5*1.33*pi*cub(Drop_rad)

    Vtot = V1+2*V2+Vdrop  // inflow region should be counted twice
#-------------------------

    dimension = 3
    nparticles = 10000   //  adjust as needed

    # space_adjust determines the max number of particles
    #   the block will expand in size due to the moving
    #     right boundary 
    #  may need adjusting if long times are desired
    #  try values, and check the memory used

    space_adjust 1.3 
                      
    max_time = 20.e-6

    restart_dumps = 2
    hist_dumps = 20
    plot_dumps = 10
     plot_temp
     plot_vx
     plot_vy
     plot_pressz
     plot_weber

    pert_size = 0.0
    h_inp = 1.
    h_vary = true

    symmetry x
    symmetry z

    energy_smooth
    pmin = -5e6   // standard

#---------boundaries-------

#---inflow boundary---

  set_boundary inflow
    direction y
    location = -Length/2-Shift-Inflow_length
    side low
    velocity = Vel
    buffer_width = Inflow_length
  end_boundary

#---outflow at right---
set_boundary outflow
    direction y
    location = Length/2-Shift
    side high
    type = reflect2
    buffer_width = Inflow_length
    velocity = Vel
    drift_velocity = Vel/10        // allow drift
end_boundary

#---tube walls---

set_boundary outer
    direction ry
    location = Width/2
    side high
    type soft_reflect
end_boundary


#-------regions----------

set_region drop
    material h2o
    eos moylan
    mu = 1.e-3   //  best surface tension
    pressure = 4*26.6*Psi  // equal to the gas pressure
end_region

set_region reg0   // this is the gas region with the drop
    material pg
    eos pg
    gamma = 1.4
    mu = 29.
    density = Density
    temp = Temp
end_region

#---normally the inflow region matches reg0
#   but, could be different to represent a shock, etc.
#   the inflow region will regenerate as needed

set_region inflow   // inflow region
    material pg
    eos pg
    gamma = 1.4
    mu = 29.
    density = Density
    temp = Temp
end_region


#---- model build follows----

// get exact sphere setup for testing, revert when done

begin_region drop
    part_mult = 2*Vdrop/Vtot
    do_sphere Drop_rad Drop_rad/3
    part_mult 0.2*Vdrop/Vtot
    do_sphere 2*Drop_rad/3

begin_region reg0
    part_mult = V1/Vtot
    do_cylinder Width/2 Length
    velocity_reg 0 Vel 0
    translate_reg 0 -Shift 0 
    trim_reg 1.75

#---build inflow block---must be last one---
begin_region inflow
    part_mult = V2/Vtot
    do_cylinder Width/2 Inflow_length
    velocity_reg 0 Vel 0
    translate_reg 0 -Length/2-Shift-Inflow_length/2 0


[bookmark: _Toc48894986]Flyer Plate Impact – 1D

This is a standard aluminum “Plate-on-plate” impact experiment. A moving plate (velocity 0.39 km/s) impacts a stationary plate. The moving plate is half the thickness of the target plate. This test uses the simplest setup - a 1 dimensional run with infinite plate widths, so, no edge effects. The purpose of the test is to model the shock wave caused by the impact, and its subsequent reflections and merges over time. In particular, at 3 s after the two shocks have reflected from the ends of the plate, they meet at the center of the thicker plate and become a strong rarefaction wave. This results in the SPH “tensile instability” where the pressure becomes violently unstable. This is a feature of all cell-centered codes. The new VSP (Virtual Stress Point) used in SPHC eliminates this instability, and this test verifies this. 

The plots below show the run of pressure at various times, note the behavior after 3 s.
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File name for this test is “plate1D.inp”, run time is 2.11 s. 

#====flyer plate test case====

problem_title "Plate_1D"
run_title "elastic"

    dimension = 1
    nparticles = 500

    //space_adjust = 1.02

    max_time = 6.e-6

    restart_dumps = 30
    hist_dumps = 60

    pert_size = 0.  // no rand
    pmin = -1.e11   // no pmin

    dump_accel
    dump_eos

#-----user variables-----

  Veloc = 0.39e5
  Thick1 = 0.608  // left slab
  Thick2 = 1.27   // right slab

#-------strength-------

strength_model elastic

#-------regions----------

set_region "moving"
    material al
    //eos usup
    eos linear
end_region

set_region "fixed"
    material al
    //eos usup
    eos linear
end_region

#-------data probes--------

set_probe moving -Thick1/2
set_probe moving 0.
set_probe moving Thick2/2

#---- model build follows----

begin_region "moving"
  part_mult = Thick1/(Thick1+Thick2)
  do_block Thick1 1.0 1.0
  translate_reg -Thick1/2 0. 0.
  velocity_reg Veloc 0 0

begin_region "fixed"
  part_mult = Thick2/(Thick1+Thick2)
  do_block Thick2 1.0 1.0
  translate_reg Thick2/2 0. 0.



[bookmark: _Toc48894987]Flyer Plate Impact – 3D

This is the 3D version of the previous test case. Stability in the rarefaction is preserved, but the shocks are smoothed out a bit relative to the 1D run.  Only 20,000 particles are used for this run, which is a very low number for a 3D run. This is to reduce run time for the test. For an application, at least 200,000 particles would be used, and the shocks would be much better defined. 
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File name for this test is “plate3D.inp”, run time is 2.9 min.

#====3D flyer plate test case====

problem_title "Plate_3D"
run_title "03"

    dimension = 3
    nparticles = 20000

    space_adjust = 1.05

    max_time = 1.e-6

    restart_dumps = 10
    hist_dumps = 50

    pert_size = 0.  // no rand
    h_inp = 1.
    pmin = -1.e11   // no pmin

    dump_accel
    dump_eos

#-----user variables-----

  Veloc = 0.39e5
  Thick1 = 0.608  // left slab
  Thick2 = 1.27   // right slab

#-------strength-------

strength_model elastic  //off for inst

#-------regions----------

set_region "moving"
    material al
    //eos usup
    eos linear
end_region

set_region "fixed"
    material al
    //eos usup
    eos linear
end_region

#-------data probes--------

set_probe moving -.3
set_probe moving 0.
set_probe moving 0.6

#-------boundaries--------

symmetry y
symmetry z

set_boundary top
  location 0.5
  direction y
  side high
  type reflect
end_boundary

set_boundary front
  location 0.5
  direction z
  side high
  type reflect
end_boundary


#---- model build follows----

begin_region "moving"
  part_mult = Thick1/(Thick1+Thick2)
  do_block Thick1 1.0 1.0
  translate_reg -Thick1/2 0. 0.
  velocity_reg Veloc 0 0

begin_region "fixed"
  part_mult = Thick2/(Thick1+Thick2)
  do_block Thick2 1.0 1.0
  translate_reg Thick2/2 0. 0.




[bookmark: _Toc48894988]Stiff Foam Cylinder Impact – 2D

This is a test of a BX250 foam cylinder impacting a fixed boundary at 700 ft/s. This case was run at NASA Glenn laboratory and showed in most cases extreme compression of the foam, followed be a near-elastic rebound at about half the initial impact velocity, about the initial length of the foam cylinder, and with only minor damage at the end of the cylinder. This test is a simplified version of this case. The main modeling challenge is to see if the spherical SPH particles could successfully model the compressive phase, which would normally be handled in other codes by a distortion of a grid, and then return the shape to its original form. The result is shown below, colored on density. The extreme compression length and final velocity of the foam are close the the experimental results.

[image: ]

Input file is named “Foam_Cyl.inp”. Run time is 19.38 s. Listing below.


#====foam cylinder impact====

#---uses 3D foam model---

problem_title "FCYL"
run_title "5"

   debug_part = 20

#----conversion factors----
  In = 2.54
  Ft = 12*In
  Psi = 6.895e4
  Ksi = 1.e3*Psi
  Bar = 1.e6
  Kbar = 1.e9
  Lbf = 4.4482e5
  Lbm = 453.59
  Usec = 1.e-6
  Msec = 1.e-3
  Ftps = Ft
  Kmps = 1.e5
  Lbft3 = 1.6018e-2
  Ftlb = 1.3558e7
  Hz = 2*pi

  //  output units
  set_units location in In
  set_units velocity ft/s Ftps
  set_units time ms Msec
  set_units density lb/ft3 Lbft3
  set_units stress psi Psi
  set_units probe_stress psi Psi
  set_units bdry_force lb Lbf
  set_units energy ftlb Ftlb

#----basic 2D settings---
    dimension = 2
    nparticles = 1000
    space_adjust = 1.05

    cylindrical

    max_time = 1.2*Msec
    restart_dumps = 12
    hist_dumps = 60

    err_tol 1.e-2
    energy_smooth .1

#----setup----

FoamDiam = 1.25*In
FoamLen = 3*In
FoamDensity = 2.06*Lbft3  // GRC test value
FoamVel = 700*Ftps

#----strength model----

  strength_model elas_str_hard

#---wall boundary---

set_boundary wall
  direction y
  slip 
  track_force
end_boundary

#---materials---

add_material bx250
    //rho_0 = 1.15    //  use .038
    rho_0 = 0.35
    a_mol = 100     //??
    a_atm = 20      //??
    z_atm = 10      //??
    ion_en = 10     //??
    gamma_G = 0.5  // lanl value
    s_shock = 0.75 
    gamma_mol = 1.333
    //cs_0 = 1.e5   //??
    cs_0 = 5.e4      // GRC bounce
    cv_0 = 1.5e6  
    cv_liq = 1.e6 
    tmelt = 600    //??
    hmelt = 1.e8    //??
    tvap = 1000     //??
    hvap = 1.e9     //??
    //ey = 5.0e8
    //ey = 7.322e7 // from sr 4/4
    sy = 5.0e6   //??
    pr = 0.07   //  new result 
    //st = 5.2e6  
    em = 0.145    //  new
    br = 0.5

  ey = 2.6*Ksi    // ED30 numbers
  sy = 60.*Psi 
  st = 80.*Psi
  pr = 0.07     // BX250 
  em = 0.12     // ED30

end_material

#-------regions----------

set_region foam
    material bx250
    density FoamDensity
    pressure = 1*Bar    //pore pressure

    eos crush
      elastic_crush 
      p_elastic = 13*Psi    // from fit
      p_crush = 95*Psi

    av_alpha = 3.5  //  dissipation
    av_beta = 3.5 

    strength_model elastic   // bx250
      //fracture    // not bad either way

  strength_mode xyz 1 3 1   // aniso here

end_region

#---- model build follows----

begin_region foam
    part_mult = 0.9
    do_cylinder FoamDiam/2 FoamLen
    translate_reg 0. 1.1*FoamLen/2 0.
    velocity_reg 0. -FoamVel 0.


[bookmark: _Toc48894989]Breaking Water Wave – 2D

This is a simple model of a wave breking on a beach. A layer of water is created over an inclined “frozen” block “beach”. A large block of water is then added on top of the left side of the initial layer and allowed to flow. The result is a breaking wave, shown here colored on pressure. Plot interval is ½ second, and the peak pressure is 5 psi.
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Input file name is “wave1.inp”, run time is 2.02 min, listing follows.

#====Sphere Water Impact Test==========================

/*  breaking wave  */

problem_title "Splash"
run_title "wave1"

#----conversion factors----

  read_file units.inp

  //  output units
  set_units location m Mtr
  set_units velocity ft/s Ftps
  set_units time s 1
  set_units stress psi Psi

#----basic settings--------------------------------------

  Velocity = 10*Mps

  dimension 2
  npart = 10000
  space_adjust = 1.0

  #---set dumps here---
    max_time = 3
    restart_dumps = 3   
    plot_dumps = 30
      plot_press
      plot_flow
    hist_dumps = 80

    quiet_start
    pmin = -5.e6   // surface tension

    err_tol .01
    energy_smooth .1

    // viscosity params
    balsara         // reduce shear

    gravity 0 -Grav 0

    slip_regions 0.1  // friction

#----user params----------------------------------------

  //  sphere dimensions

  Lslug = 4.5*Mtr
  Hslug = 6*Mtr

  //  Wave dimensions

  Height = 3*Mtr   // complete box height
  Length = 30*Mtr   // wave box length

   //  Volumes

  Vslug = sq(Lslug)
  Vwave = Height*Length

  Vt = Vslug+1.5*Vwave

#------boundaries-----------------------------

set_boundary left
    location -Length/2
    direction x
    side low
    type reflect
end_boundary

set_boundary bottom
    location -Height
    direction y
    side low
    type reflect
end_boundary


#-------regions-------------------------------------------

set_region ocean
    material h2o
    eos water  
    mu = 1.e-3     // <--- for time step adjustment...
    pmin = -5.e6   // surface tension
end_region

set_region slug
    material h2o
    eos water  
    mu = 1.e-3     // <--- for time step adjustment...
    pmin = -5.e6   // surface tension
end_region

set_region beach
    material nylon
    eos grun
    frozen
end_region

#---- model build follows---------------------------------

begin_region ocean
    part_mult = Vwave/Vt
    do_block Length Height 0
    translate_reg 0 -Height/2 0.

begin_region slug
    part_mult = Vslug/Vt
    do_block Lslug Hslug 0
    translate_reg -Length/2+Lslug/2 Hslug/2 0
    velocity_reg 5*Mps -5*Mps 0

Angle = (atan(Length/Height)/Deg-90)

begin_region beach
    part_mult = 0.3*Vwave/Vt
    do_block 1.2*Length Height 0
    translate_reg .125*Length 0 0 
    rotate_reg 0 0 -Angle
    translate_reg -Height*sin(Angle*Deg)+5*Mtr -Height 0.
    make_room_reg 2
    delete_box -20*Mtr 20*Mtr -10*Mtr -Height 0 0 
    




[bookmark: _Toc48894990]Flow from a Pipe - 3D

This case models water flowing in a pipe at 10 m/s. The pipe is modeled as a boundary condition that ends at the origin. The water is pushed through the pipe by a moving piston boundary at the rear end. After leaving the pipe, the water flows freely under a downward gravity force (enhanced here by x10). After falling 3 ft, the waterfall encounters a floor boundary and splashes. The entire run uses only a single region plus three specialized boundary conditions.

This case illustrates a short-cut for handling all possible sets of units – the file units.inp (listed in Section 3.w) is input to the run using a “read_file” command at the top of the setup file.

Starting and ending snapshots, colored on number of adjacent boundaries.
[image: ]



Run time for this case is 3.01 min, file name is “flow.inp”.

#====Water flow/impact=======================

problem_title "Flow"
run_title "1"

#---Flow of water from a pipe---

read_file Units.inp

  //  output units
  set_units location ft Ft
  set_units velocity ft/s Ftps
  set_units time ms Msec
  //set_units density lb/ft3 Lbmft3
  set_units stress psi Psi
  set_units probe_stress psi Psi
  set_units bdry_force lb Lbf
  set_units energy ftlb Ftlb
  set_units rotation Hz Hz
  set_units accel g Gearth

#----basic settings-----------------------------------

    dimension = 3
    nparticles = 12000 

    space_adjust = 1.03
    max_time = 0.15
    restart_dumps = 5  
    plot_dumps = 15
    hist_dumps = 30

    plot_press
    plot_flow
    plot_accel
    plot_v
    plot_vx
    plot_vy
    plot_vz
    plot_xyz0
    plot_bdries

    quiet_start
    p_offset
    pmin = -5.e6    //surface tension
    
    pert_size = 0.1  //should drop!!!
    energy_smooth     //was .1, left blank as in bobs fine file
    err_tol 0.01

    no_boundary_warnings  //  for front nozzle

    // viscosity params
    balsara         // reduce shear

    gravity 0. 0. -10*Gearth   //add acceleration due to gravity

#----user params-------------------------------------
        
Pipe_len = 5*Ft
Runout = 4*In   // front pipe extension

#------boundaries--------------------------------------

set_boundary pipe         //to contain the water
  location 10*In     
  direction ry
  side high
  limit y 0 Pipe_len+Runout 
end_boundary

set_boundary piston      // rear end of pipe
  direction y
  side high
  location Pipe_len+Runout
  velocity -10*Mtrps
  limit ry 0 10*In
end_boundary

set_boundary floor
  direction z
  side low
  location -3*Ft
end_boundary
  
#-------regions----------------------------------------

set_region water
    material h2o  
    eos water
    mu = 1.e-3     // surface tension
    pmin = -5.e6   // surface tension
end_region



#---- model build follows----------------------------

begin_region water

    set_parts 10000
    do_cylinder 10*In Pipe_len       
    translate_reg 0. Pipe_len/2+Runout 0.
    velocity_reg 0 -10*Mtrps 0.  



[bookmark: _Units_Conversions_File][bookmark: _Toc48894991]Units Conversions File

This file lists all of the currently used unit definitions. The numerical values are the factors needed to convert to native SPHC cgs units. All variables are normal user variables in SPHC, available to all codes, and are declared “constant”, to prevent redefinition by mistake in local code. In addition to the unit conversion factors, a list of useful mathematical and physical constants are provided.

File name is “units.inp”.


#----SPHC conversion factors----2/16 version---
#   SPHC is cgs
#   SI = SI units
#   Br = British engineering units

constant       //  fix all values

#---constants---
  Rgas = 8.317e7       //  gas constant
  Clight = 2.9979e10
  Atmden = 1.2928e-3   //  STP density
  AU = 1.49597871e13   //  astronomical unit
  Msol = 1.9891e33     //  solar values
  Tesol = 5778
  Lsol = 3.846e33
  Rsol = 6.955e10
  Gsol = 27444.1
  Gconst = 6.674e-8    //  grav constant  
  SIG = 5.6690e-05     //  erg/cm2/deg^4/sec
  N0 = 6.0232e23       //  particles/mole
  Gearth = 980.665     //  earth grav

#--length = l
  Cm = 1
  Mm = 0.1
  Um = 1.e-4
  In = 2.54
  Mil = .001*In
  Ft = 30.48   // Br
  Mtr = 100   // SI
  Km = 1.e5
  Mi = 1.609344e5
  Au = 1.4960e13
  Ly = 9.4605e17
  Pc = 3.0857e18
#--area = l^2
  Cm2 = 1
  Mm2 = 0.01
  Mtr2 = 1.e4   // SI
  In2 = 6.4516
  Ft2 = 929.03  // Br
  Km2 = 1.e10
  Ba = 1.e-24
#--volume = l^3
  Cm3 = 1
  Mm3 = 0.001
  Ltr = 1.e3
  Qt = 946.35
  Mtr3 = 1.e6   // SI
  In3 = 16.387
  Ft3 = 2.8317e4  // Br
  Ozfl = 29.574
  Gal = 3785.412
  Bbl = 42*Gal   // oil barrel
#--time = t
  Sec = 1   // SI, Br
  Msec = 1.e-3
  Usec = 1.e-6
  Nsec = 1.e-9
  Min = 60
  Hr = 3600
  Day = 86400
  Yr = 31557600
  Shake = 1.e-8
#--speed = l/t
  Cmps = 1
  Mtrps = 100   // SI
  Kmps = 1.e5
  Ftps = 30.48   // Br
  Inps = 2.54
  Mph = 44.70
  Mps = Mph*60*60
#--accel = l/t^2
  Cmps2 = 1
  Mtrps2 = 100   // SI
  Ftps2 = 30.48   // Br
  Inps2 = 2.54
  Grav = Gearth   // old version
#--mass = m
  Gm = 1
  Kg = 1.e3   // SI
  Mg = 1.e-3
  Ug = 1.e-6
  Lbm = 453.59237
  Slug = Lbm*Gearth/Ft   // Br
  BTon = 9.0718e5        // 2000 lb
  Ton = 1.e6             // metric ton
  Oz = 28.349523125
  Grain = Lbm/7000
#--force = ml/t^2
  Dyne = 1
  Lbf = 4.4482e5   // Br
  Kip = 1.e3*Lbf
  Gf = 980.67
  Ntn = 1.e5   // SI
#--pressure = m/lt^2
  Dynecm2 = 1
  Bar = 1.e6
  Kbar = 1.e9
  Mbar = 1.e12
  Psi = 6.895e4
  Ksi = 6.895e7
  Msi = 6.895e10
  Pa = 10    // Nt/m2  SI
  KPa = 1.e4
  MPa = 1.e7
  Mpa = MPa
  GPa = 1.e10
  Lbfft2 = 478.8   // Br
  Lbfin2 = 68947.2
#--density = m/l^3
  Gmpcc = 1
  Lbmft3 = 1.6018e-2
  Slgft3 =  0.515379   // Br
  Lbmin3 = 27.68
  Slgin3 = Lbmin3*Gearth/Ft
  Kgm3 = 1.e-3   // SI
#--areal density = m/l^2
  Kgm2 = 0.10   // SI
  Lbmft2 = 0.48824
  Lbmin2 = 70.30696
  Slgft2 = 15.7089   // Br
  Slgin2 = 2262.08
#--energy = ml^2/t^2
  Erg = 1
  Joule = 1.e7   // SI
  KJ = 1.e3*Joule
  MJ = 1.e3*KJ
  Cal = 4.1868e7
  KCal = 1.e3*Cal
  Ftlb = 1.3558e7   // Br
  Btu = 1.0551e10
  Ev = 1.6022e-12
  Kev = 1.e3*Ev
  Mev = 1.e6*Ev
  Kton = 4.2e19
  Jerk = 1.e16
#--temperature--
  DegK = 1   // SI
  DegR = 5/9
  DegF = 5/9  // ADD 255.372  Br
  DegF_shift = 225.372
  DegC = 1    // ADD 273.15
  DegC_shift = 273.15
  T_Ev = 11604.505
#--power = ml^2/t^3
  Ergps = 1
  Watt = 1.e7   // SI
  Hp = 7.457e9  // 550 Ftlbps
  Ftlbps =  1.3558e7   // Br
#--frequency = t^-1
  Radps = 1
  Hz = 2*pi   // SI
#---angles
  Rad = 1   // SI
  Deg = pi/180
#---Miscl
  Mpg = 42.515

constant false




4. [bookmark: _Toc48056987][bookmark: _Toc48894992]Applications

This section shows some examples of how the simple test cases can be modified to use on a more realistic scenario, and how the results are affected.

1. [bookmark: _Toc48056988][bookmark: _Toc48894993]Explosion

Any explosive scenario will generate a blast wave and will tend to evolve to something resembling the blast wave cases discussed above in its outer regions. Realistic cases will differ because of the lower (i.e. finite) energy of the blast, and the more extended size of the initial hot region. In addition, any structures and surfaces near the blast will influence the result. SPHC can easily handle all of these effects. 

Actual blasts usually show a strong shock followed by a period of strong reverse flow, as seen in some of the early atomic testing in Nevada. This could be followed by secondary shocks. These effects are characteristic of actual ground blasts.

The test case shown here, labeled “blastJ” begins with an extended region near the origin containing hot gas characteristic of a PBX explosive described by a JWL equation of state. Geometry is 1D / spherical. Final plot for this run shows a double blast wave, but at later time the outer wave dominates, and the result tends toward the normal blast wave case discussed above. Run time for this test is 6.24 s.
[image: ]
 
[image: ]

Probe data for the density is shown above. Note the near constant velocity of the primary blast front and its decrease in strength – both caused by the relatively large initial radius of the blast.

The interface between the hot and cold initial gas region can be unstable if the velocity reverses in this region. This can be seen in two dimensional runs for this case, as seen in the snapshot below, colored on region, where the blast wave is at the outer edge of the frame (dark blue region), and the interface (red/blue) has developed a pronounced instability as it is driven inward. In field tests the red inner region is often seen as a smoke or dust cloud containing the remnants of the explosion.

[image: ]

Listing for the 1D case is shown below, file neme is    “blastJ.inp”.

#====blast wave test case====

problem_title "Blast 1D"
run_title "JWL"

    dimension = 1
    nparticles = 1000

    max_time = 10e-6

    restart_dumps = 20
    plot_dumps 20
       plot_press
    hist_dumps = 800

    err_tol 0.01

    dump_accel
    dump_eos

    spherical   //  spherical wave!

    Outer = 4
    Bdry = 0.2*Outer

#---------boundaries-------

set_boundary left
    location = 0.
    side low
end_boundary

set_boundary right
    location = Outer
    side high
end_boundary

#-------data probes--------

set_probe fixed 0.3*Outer 0. 0.
set_probe fixed 0.5*Outer 0 0
set_probe fixed 0.7*Outer 0 0

#-------regions----------

Mbar = 1.e12
Mtrps = 100

set_region "high temp"
  material pg
  eos jwl
  set_jwl   0.45  16.689*Mbar  0.5969*Mbar  5.9  2.1   //  PBX9501
  set_jwl0  1.762  3500 0.0579*Mbar 9000*Mtrps
end_region

set_region "low temp"
    material pg
    eos pg
    gamma = 1.6667
    mu = 1.
    density = 1.
    temp = 300.
end_region

#---- model build follows----

begin_region "high temp"
    part_mult = Bdry/Outer
    do_sphere Bdry

begin_region "low temp"
    part_mult = (Outer-Bdry)/Outer
    do_sphere Outer Outer-Bdry

smooth 2. 1 1




[bookmark: _Toc48056989][bookmark: _Toc48894994]Debris Cloud

In addition to the expanding hot gas behind a blast wave, in most explosive incidents a cloud of solid debris particles is also formed. In this case the failure mechanism for the containment structure (fuel tank, etc.), is the primary mechanism for the debris cloud formation. The cloud expansion velocity will be determined by the interior hot gas pressure, as well as the details of the release of this pressure and the energy required to fracture the material. This test case models the formation and initial expansion of a debris cloud. A small aluminum sphere is modeled with an initial outward velocity. The velocity is large enough to overcome the fracture strength of the material (fracture model is default fracture with Weibull fault distribution). This test case can easily be modified to apply to a realistic structure, actual explosive and the effect of atmospheric deceleration of the debris at late times. In most cases, the debris cloud will expand with approximately constant radial velocity while the blast wave is decelerating as more gas is swept up, and the debris will eventually overtake the blast front. This could be important for some situations, and make the debris cloud the primary threat to an escape vehicle or other nearby structure. These plots are colored on material phase, starting with red (solid), moving through orange (plastic deformation), to blue (fractured). Run time for this model is 1.2 min.
[image: ]

[image: ]
The upper 4 frame sequence shows the expanding debris cloud from the hollow sphere. The lower two frames show the final configuration (left) as compared to the debris cloud produced by the expanding cylinder test case (Cyl/3, right) discussed in the standard case list, but run to the same late time as this test. This is probably more representative of an actual application minus the massive parts, such as engines, nosecones, etc., that would be traveling at lower velocities and thus located nearer the origin at late time.

As an example of a case involving all three components of an explosive failure, the figure below shows the very early stage of a tank failure, including ruptured steel tank debris (red, view is down the axis of a cylindrical tank)), expanding high temperature gas (light blue), mixing layer of this gas with an expernal atmosphere (blue mushrooms), and the blast front (medium blue, near outer edge). At later times the blast wave will expand and slow, the debris will accelerate and disperse.

[image: C:\home\RFS\Web Picts\tank_d.jpg]


Setup file for the “egg” test is shown below (file name = egg3D.inp)

#==== exploding egg test case====

problem_title "Egg"
run_title "1-3D-j20"

#---units---
Usec = 1.e-6
Msec = 1.e-3

Usec = 1.e-6

    dimension = 3
    nparticles = 5500

    space_adjust = 1.1
    max_time = 200*Usec
    restart_dumps = 5
    plot_dumps = 20
        plot_v
    hist_dumps = 400
    h_inp = 1.0
    h_vary = true
    error_control false

    pert_size 20   // (up from 1)

symmetry x
symmetry y
symmetry z

#--------strength--------

strength_model elas_perf_plas
    fracture

#-------regions----------

set_region ball
    material al
    eos grun

  strength_model elas_perf_plas
    fracture
    weibull

end_region

#---- model build follows----

Vel = 5.e4 
Radius = 3
Thick = 0.10

begin_region ball
    part_mult = 1
    do_sphere Radius Thick

    radial_velocity
      points 0 Vel 10 Vel
    end_velocity


[bookmark: _Toc48056990][bookmark: _Toc48894995]Woven Structures

Many fabric and composite materials are now constructed of woven layers, sometimes with complex geometries. In this section we present a “subroutine” to generate a woven layer, and illustrate how, through repeated calls to the routine, more complex structures, consisting of several layers of woven material, can be generated.  

A typical impact on a woven mesh might look like this:

[image: C:\home\sdat\Mesh\Grid_3d\mesh.bmp]

Repeated calls in the setup to the mesh subroutine, could produce the following setup:

[image: C:\home\sdat\Mesh\Grid_3d\mesh5.bmp]

The spacing between the wires and the layers can be varied to produce a variety of materials. These models require some information about the wire material properties. Usually, each wire is strong along its length, and may stretch across its direction. The degree of attachment between wires can also be varied. Models have been successfully constructed in this way for fabrics, metal meshes, and composite materials.

Here is the routine for constructing two mesh layers. Note that in comments it shows how the two layers could be built separately, then repeats the same calls using a loop over layers with subscripted layer names.

/*--- impact vulnerability simulation ------*/

/*  (c) 11/15/2003 - Stellingwerf Consulting */

//  woven target test case
//  subroutine version

problem_title "CASE M"   
run_title "3D"            

#----run parameters----

  Layers = 2

  dimension = 3
  nparticles = Layers*30000

  #---impactor parameters---
  P_rad = 0.25*2.54/2
  Vel = 7.0e5
  Angle = 45. 

  #---mesh parameters---
  T_thick = 0.02      //  32 gauge wires
  T_width = 2.54/2    //  1/2 width in Z 
  T_length = 2.54     //  length in X     
  Nwires = 8          //  in z direction/2
  N2wires = 16        //  in x direction
  Mesh_top = 0

  /*  miscl  */

  symmetry z        //  build 1/2 problem
  space_adjust = 1.2
  err_tol = 1.e-3
  debug_part = 20
  slip_regions

  /*  run control  */

  max_time = 3.e-6;
  restart_dumps = 5
  plot_dumps = maxt/1.e-7
  hist_dumps = 100

#----derived quantities----

  Theta = rad*Angle

  V1 = 1.333*pi*cub(P_rad)/2;
  Vx = pi*sq(T_thick/2)*T_length*Nwires;
  Vy = pi*sq(T_thick/2)*T_width*N2wires

  F1 = V1/10
  Fx = Vx/2
  Fy = Vy/2
  Ft = F1+Layers*(Fx+Fy)

#----strength----

  strength_model = high_str_rate
    fracture

#----define regions----

set_region ball
    material al2017
    eos grun
end_region

set_region meshx
    material = al1350
    eos grun
end_region

set_region meshy
    material = al1350
    eos grun
end_region

#----begin model build----

                 /*  projectile  */

begin_region ball
    part_mult = F1/Ft
    do_sphere P_rad P_rad
    translate_reg P_rad*tan(Theta) P_rad+T_thick 0.
    velocity_reg -Vel*sin(Theta) -Vel*cos(Theta) 0.

#----call mesh build subroutine----

//begin_item mesh1
//read_data mesh_sub.inp
//end_item mesh1

//  Mesh_top = -.5

//begin_item mesh2
//read_data mesh_sub.inp
//end_item mesh2

begin_loop_i = 1 Layers
  begin_item mesh[ii]
    Mesh_top = -.5*(ii-1)
    read_data mesh_sub.inp
  end_item mesh[ii]
end_loop_i

In this setup, repeated calls to the file “mesh_sub.inp” are executed. This subroutine for a general mesh layer is given below. Full instructions for its use are given in the comments at the top. Alternative commands for rectangular or round “wires” are shown in the listing.


/*  MESH_SUB  -  generate mesh target as subroutine  */

/*  Copyright (c) 2003 - Stellingwerf Consulting  */

/*  this generates a half-mesh for a "symmetry z" run  */

#    DEFINE THESE REGIONS:
#      meshx - X-direction wires
#      meshy - Y direction wires

#    Define these user variables:
#      T_thick = wire thickness in cm, .02 = 32 gauge
#      T_width = 1/2 width (Z)
#      T_length = full length (X)
#      Nwires = # of wires in Z direction / 2
#      N2wires = # of wires in X direction
#      Fx, Fy, Ft - volume multipliers, see below
#      Mesh_top - Y position of the top of the mesh

#  set "symmetry z" for rest of setup
#  set "slip_regions" to control stickiness of wires

#  typical volume setup, depends on other regions

#  V1 = 1.333*pi*cub(P_rad)/2;      //  for sphere impactor
#  Vx = pi*sq(T_thick/2)*T_length*Nwires;
#  Vy = pi*sq(T_thick/2)*T_width*N2wires

#  F1 = V1/10      //  do adjustments to the zoning here
#  Fx = Vx/2
#  Fy = Vy/2
#  Ft = F1+Fx+Fy   //  define Ft as the total vol multiplier

/*--------------START---------------------------------------------------------*/

/*  derived wire properties  */

  Wire_len = T_length/N2wires
  Wire_len2 = T_width/Nwires
  Wiggle = T_thick/Wire_len

                 /*  shield - X direction wires  */

//  turn off the z symmetry for the wire build
set_no_neg 0 0 0
 
part_mult = Fx/(Ft*Nwires*N2wires)

begin_region meshx
  begin_loop_i 1 Nwires
    Sgni = -1^ii
    begin_loop_j 1 N2wires/2
        Sgnj = -1^jj
                                  //  build wires from four skewed sections
        //do_trap Wire_len/2. T_thick T_thick -Sgni*Wiggle 0.   // square wires
        do_cylinder T_thick/2 Wire_len/2.                       // round wires
        rotate_reg 0 0 90                                       // round
        skew_reg  -Sgni*Wiggle 0.                               // round
	translate_reg Wire_len/4. -Sgni*T_thick/4. 0.
	translate_reg -Sgnj*(2*jj-1)*Wire_len/2 Sgni*T_thick/2. (ii-1)*T_width/Nwires

	//do_trap Wire_len/2. T_thick T_thick -Sgni*Wiggle 0.
        do_cylinder T_thick/2 Wire_len/2.
        rotate_reg 0 0 90
        skew_reg  -Sgni*Wiggle 0.
	translate_reg -Wire_len/4. (-1^ii)*T_thick/4. 0.
	translate_reg Sgnj*(2*jj-1)*Wire_len/2 -Sgni*T_thick/2. (ii-1)*T_width/Nwires

	//do_trap Wire_len/2. T_thick T_thick Sgni*Wiggle 0.
        do_cylinder T_thick/2 Wire_len/2.
        rotate_reg 0 0 90
        skew_reg Sgni*Wiggle 0.
	translate_reg -Wire_len/4. -Sgni*T_thick/4. 0.
	translate_reg -Sgnj*(2*jj-1)*Wire_len/2 Sgni*T_thick/2. (ii-1)*T_width/Nwires

	//do_trap Wire_len/2. T_thick T_thick Sgni*Wiggle 0.
        do_cylinder T_thick/2 Wire_len/2.
        rotate_reg 0 0 90
        skew_reg Sgni*Wiggle 0.
	translate_reg Wire_len/4. Sgni*T_thick/4. 0.
	translate_reg Sgnj*(2*jj-1)*Wire_len/2 -Sgni*T_thick/2. (ii-1)*T_width/Nwires

    end_loop_j
  end_loop_i

merge_sub_regions
translate_reg 0 0 Wire_len2/2

#----position the mesh
  translate_reg 0 Mesh_top 0
                                       
                  /*  shield - Y direction wires  */

part_mult = Fy/(Ft*Nwires*N2wires)

begin_region meshy
  begin_loop_i 1 N2wires
    Sgni = -1^ii
    begin_loop_j 1 Nwires/2
        Sgnj = -1^jj
                                  //  build wires from four skewed sections
        //do_trap Wire_len2/2. T_thick T_thick -Sgni*Wiggle 0.   // square wires
        do_cylinder T_thick/2 Wire_len2/2.                       // round wires
        rotate_reg 0 0 90                                       // round
        skew_reg  -Sgni*Wiggle 0.                               // round
	translate_reg Wire_len2/4. -Sgni*T_thick/4. 0.
	translate_reg -Sgnj*(2*jj-1)*Wire_len2/2 Sgni*T_thick/2. (ii-1)*T_length/N2wires

	//do_trap Wire_len2/2. T_thick T_thick -Sgni*Wiggle 0.
        do_cylinder T_thick/2 Wire_len2/2.
        rotate_reg 0 0 90
        skew_reg  -Sgni*Wiggle 0.
	translate_reg -Wire_len2/4. (-1^ii)*T_thick/4. 0.
	translate_reg Sgnj*(2*jj-1)*Wire_len2/2 -Sgni*T_thick/2. (ii-1)*T_length/N2wires

	//do_trap Wire_len2/2. T_thick T_thick Sgni*Wiggle 0.
        do_cylinder T_thick/2 Wire_len2/2.
        rotate_reg 0 0 90
        skew_reg Sgni*Wiggle 0.
	translate_reg -Wire_len2/4. -Sgni*T_thick/4. 0.
	translate_reg -Sgnj*(2*jj-1)*Wire_len2/2 Sgni*T_thick/2. (ii-1)*T_length/N2wires

	//do_trap Wire_len2/2. T_thick T_thick Sgni*Wiggle 0.
        do_cylinder T_thick/2 Wire_len2/2.
        rotate_reg 0 0 90
        skew_reg Sgni*Wiggle 0.
	translate_reg Wire_len2/4. Sgni*T_thick/4. 0.
	translate_reg Sgnj*(2*jj-1)*Wire_len2/2 -Sgni*T_thick/2. (ii-1)*T_length/N2wires

    end_loop_j
  end_loop_i

merge_sub_regions
translate_reg 0 0 Wire_len/2

#----reposition Y wires
  translate_reg 0 0 -T_length/2
  rotate_reg 0 90 0
  translate_reg 0 0 T_width/2

#----position the mesh
  translate_reg 0 Mesh_top 0

#----reset symmetry----
set_no_neg 0 0 1

/*--------------DONE!---------------------------------------------------------*/



[bookmark: _Toc48056991][bookmark: _Toc48894996]Folded Structures

To conserve weight, spacecraft structures are often constructed of folded layers of material that contain many angled walls and much open space. These structures are challenging to model due to the many thin layers and surfaces, as well as complex geometry. SPHC can construct these cases using the various iterative capabilities provided in the setup machinery. One example will be given here – a hex-honeycomb structure consisting of two parallel plates with a honeycomb of perpendicular walls enclosed. The model is that of a high velocity sphere impacting such a structure. The setup, colored on region, looks like this: 

[image: ]
Top view:



[image: ]


The final result following penetration looks like this:

[image: ]
The setup routine for this case, with some optional features included as comments, is shown here:

/*--- HexC_3D impact vulnerability simulation ------*/

/*  (c) 11/20/2003 - Stellingwerf Consulting */

//  hex honeycomb target test case
//  subroutine version: calls hexc_sub.inp

problem_title "HexC"   
run_title "3D"            

#----run parameters----

  dimension = 3
  nparticles = 200000

  #---impactor parameters---
  P_rad = 0.25*2.54/2
  Vel = 1.0e5
  Angle = 45. 

  #---mesh parameters---
  F1_thick = .05      //  top face thickness
  F2_thick = .05      //  bot face thickness

  H_length = .25*2.54  //  hex size, face to face
  W_height = 2.54/4      //  cell height
  W_thick = 0.02      //  wall thickness

  Ncells = 4          //  in z direction/2 (even #)
  N2cells = 8         //  in x direction

  /*  miscl  */z

  symmetry z          // build 1/2 problem
  space_adjust = 1.2
  err_tol = 1.e-3
  debug_part = 20
  slip_regions

  /*  run control  */

  max_time = 3.e-5;
  restart_dumps = 5
  plot_dumps = 50
  hist_dumps = 100

#----derived quantities----

  Theta = rad*Angle
  T_width = Ncells*H_length*sqrt(3.)   
  T_length = N2cells*H_length 

  V1 = 1.333*pi*cub(P_rad)/2
  Vf1 = T_width*T_length*F1_thick/2
  Vf2 = T_width*T_length*F2_thick/2
  Vw = 1.5*sqrt(3)*W_height*W_thick*H_length*N2cells*Ncells

  F1 = V1
  Ff1 = Vf1
  Ff2 = Vf2
  Fw = Vw           //  wall parts smaller
  Ft = F1+Ff1+Ff2+Fw

  // for 2-layer test case
  //Ft = F1+2*(Ff1+Ff2)+1.5*Fw

#----strength----

  strength_model = high_str_rate
    fracture

#----define regions----

set_region ball
    material al2017
    eos grun
end_region

set_region face1
    material = al1350
    eos grun
end_region

set_region walls
    material = al1350
    eos grun
    slip 1       //  weld to faces
end_region

set_region face2
    material = al1350
    eos grun
end_region

#----begin model build----

                 /*  projectile  */

begin_region ball
    part_mult = F1/Ft
    do_sphere P_rad P_rad
    translate_reg W_height*tan(Theta)/2 P_rad 0.
    velocity_reg -Vel*sin(Theta) -Vel*cos(Theta) 0.

#----call HC build subroutine----

  begin_item hc
    read_file hexc2_sub.inp
  end_item hc


//---------------------------------
// example code for multiple layers
//    increase npart & Ft accordingly

//W_height = 0.25    //  layer 2 is thinner

//  begin_item hc2
//    read_file hexc2_sub.inp
//  end_item hc2

//translate_item hc2 0 -1 0

//---------------------------------
// example code for filler material

//set_region fill
//    material = al1350
//    eos grun
//    slip 1
//end_region

//begin_region fill
//set_npart 5000
//do_block T_length W_height T_width 
//translate_reg 0 -W_height/2 0

//make_room_item hc

The construction procedure for repetitive structures consists of constructing a single “generator” object – in this case three walls of the hex layer joined to make a “Y” shape that, when duplicated, generates the entire honeycomb layer. For objects such as this one with plates at odd angles, be careful that all the surfaces match perfectly by using “drop_box” to square off the ends, or, possibly “make_room_reg” to eliminate overlap.

For this case, the hexagon layer is generated by the following subroutine, called “hexc2_sub.inp”. Note that, as a by-product of the usual manufacturing technique of constructing the hex layers from multiple foil layers that are welded along one edge of the cell, then expanded to form the grid, two faces of each cell are double thickness. This is the version modeled here.


/* Hexc2_sub  -  generate hex honeycomb target as subroutine  */

/*  Copyright (c) 11/20/2003 - Stellingwerf Consulting  */

/*  this generates a half-target for a "symmetry z" run  */
/*  top of honeycomb is placed at Y=0  */
/*  single honeycomb layer generated  */

/*  double thickness parallel wall version  */

#    DEFINE THESE REGIONS:
#      face1 - material for upper face sheet
#      face2 - material for lower face sheet
#      walls - material for wall separators
#         set "slip 1" for walls to weld to face plates

#    Define these user variables:
#      F1_thick = top face sheet thickness
#      F2_thick = bottom face sheet thickness
#      H_length = size of a hex cell, face to face (X)
#      W_height = distance (Y) between face sheets in cm
#      W_thick = wall thickness (Z) - thin wall

#      Ncells = # of cells in Z direction / 2 (even)
#      N2cells = # of cells in X direction
#      Ff1, Ff2, Fw, Ft - volume multipliers, see below

#  set "symmetry z" for rest of setup
#  insert the command "get_reg_density walls W_den" after the region defs

#--------typical volume setup, depends on other regions--------
#  T_width = Ncells*H_length*sqrt(3.)   //  Z
#  T_length = N2cells*H_length          //  X
#  V1 = 1.333*pi*cub(P_rad)/2;            //  for sphere impactor
#  Vf1 = T_width*T_length*F1_thick/2;     //  each facesheet
#  Vf2 = T_width*T_length*F2_thick/2;     //  each facesheet
#  Vw = 1.5*sqrt(3)*W_height*W_thick*H_length*N2cells*Ncells   //  cells

#  F1 = V1               //  do adjustments to the zoning here
#  Ff1 = Vf1
#  Ff2 = Vf2
#  Fw = 4*Vw             //  make particles smaller in walls
#  Ft = F1+Ff1+Ff2+Fw    //  define Ft as the total vol multiplier

/*--------------START---------------------------------------------------------*/

/*  local variables  */

  Wall_len$ = H_length/sqrt(3.)
  get_reg_density walls W_den$
  get_reg_density face1 F1_den$
  get_reg_density face2 F2_den$

#----do top face sheet----

begin_region face1
    part_mult Ff1/Ft
    do_block T_length F1_thick T_width
    mass_reg F1_den$*T_length*F1_thick*T_width/2
    translate_reg 0 -F1_thick/2 0

#----turn off the z symmetry for the wall build----
set_no_neg 0 0 0

begin_region walls
                     //  basic tri-wall unit, taper wall ends to fit
   begin_item h_unit
      part_mult = 2*Fw/(6*Ft*Ncells*N2cells)
      do_block Wall_len$/2 W_height 2*W_thick
          //  adjust the mass of the initial element
      mass_reg 2*W_den$*(Wall_len$/2)*W_height*W_thick
      translate_reg Wall_len$/4 0 0

      rotate_reg 0 60 0
      delete_box -H_length H_length -W_height W_height -H_length 0.
      rotate_reg 0 60 0
      delete_box -H_length H_length -W_height W_height -H_length 0.
      rotate_reg 0 150 0

      part_mult = Fw/(6*Ft*Ncells*N2cells)
      do_block Wall_len$/2 W_height W_thick
      mass_reg W_den$*(Wall_len$/2)*W_height*W_thick
      translate_reg Wall_len$/4 0 -W_thick/2
      rotate_reg 0 60+atan(W_thick/(Wall_len$))/rad 0
      delete_box -H_length H_length -W_height W_height -H_length 0.
      rotate_reg 0 -30 0
      dup_reg
      reflect_reg 1 0 0
      merge_sub_regions
   end_item h_unit
                    // now build all the hexes

  begin_loop_i = 1 Ncells/2
      begin_loop_j = 1 N2cells
        if ii*jj=1
            //  skip first hunit-already done above
        else
            dup_item h_unit
            translate_reg (jj-1)*H_length 0 (ii-1)*3*Wall_len$
        end_if
        dup_item h_unit
        rotate_reg 0 180 0
        translate_reg (jj-1)*H_length 0 (ii-1)*3*Wall_len$+2*Wall_len$

        dup_item h_unit
        translate_reg (jj-1)*H_length+H_length/2 0 3*(ii-1)*Wall_len$+1.5*Wall_len$
        dup_item h_unit
        rotate_reg 0 180 0
        translate_reg (jj-1)*H_length+H_length/2 0 3*(ii-1)*Wall_len$+0.5*Wall_len$          
     end_loop_j
  end_loop_i

#----delist temporary building block----
delist_item h_unit

#----finish up----
merge_sub_regions
translate_reg -N2cells*H_length/2 -W_height/2 Wall_len$/2

#----position the mesh----
translate_reg H_length/4 -F1_thick 0                                   

#----reset symmetry----
set_no_neg 0 0 1

#----do bottom face sheet----

begin_region face2
    part_mult Ff2/Ft
    do_block T_length F2_thick T_width
    mass_reg F2_den$*T_length*F2_thick*T_width/2
    translate_reg 0 -W_height-F2_thick/2-F1_thick 0
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